Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089593760> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W3089593760 abstract "Cervical malignancy can be viably counteracted if identified in the pre-cancerous stage. In order to appropriately treat cervical cancer, making an accurate determination of a patient’s cervical type is critical. However, doing so can be difficult, even for trained healthcare providers, because of the thin-line difference among the various cervix types. Kaggle and Mobile ODT have distributed a gathering of a few thousand commented on photographs of cervices. In this paper, we utilize profound learning approaches in computer vision, for example, convolutional neural networks and transfer learning. We try different things to experiment the models, for example, batch normalization, image augmentation, and dataset methodologies, for example, cropping the images. The initiations are utilized for the preprepared model Inception v3 which was prepared on the ImageNet dataset of 1.2 million pictures." @default.
- W3089593760 created "2020-10-08" @default.
- W3089593760 creator A5015468803 @default.
- W3089593760 creator A5074990253 @default.
- W3089593760 creator A5082448960 @default.
- W3089593760 date "2020-09-29" @default.
- W3089593760 modified "2023-10-16" @default.
- W3089593760 title "Deep Learning in Health Care: Automatic Cervix Image Classification Using Convolutional Neural Network" @default.
- W3089593760 cites W1979319218 @default.
- W3089593760 cites W2194775991 @default.
- W3089593760 cites W22040386 @default.
- W3089593760 cites W2301358467 @default.
- W3089593760 cites W2345003174 @default.
- W3089593760 cites W2919115771 @default.
- W3089593760 cites W2942680458 @default.
- W3089593760 doi "https://doi.org/10.1007/978-981-15-7130-5_10" @default.
- W3089593760 hasPublicationYear "2020" @default.
- W3089593760 type Work @default.
- W3089593760 sameAs 3089593760 @default.
- W3089593760 citedByCount "1" @default.
- W3089593760 countsByYear W30895937602022 @default.
- W3089593760 crossrefType "book-chapter" @default.
- W3089593760 hasAuthorship W3089593760A5015468803 @default.
- W3089593760 hasAuthorship W3089593760A5074990253 @default.
- W3089593760 hasAuthorship W3089593760A5082448960 @default.
- W3089593760 hasConcept C108583219 @default.
- W3089593760 hasConcept C115961682 @default.
- W3089593760 hasConcept C119857082 @default.
- W3089593760 hasConcept C121608353 @default.
- W3089593760 hasConcept C126322002 @default.
- W3089593760 hasConcept C136886441 @default.
- W3089593760 hasConcept C144024400 @default.
- W3089593760 hasConcept C150899416 @default.
- W3089593760 hasConcept C154945302 @default.
- W3089593760 hasConcept C19165224 @default.
- W3089593760 hasConcept C2778220009 @default.
- W3089593760 hasConcept C41008148 @default.
- W3089593760 hasConcept C71924100 @default.
- W3089593760 hasConcept C75294576 @default.
- W3089593760 hasConcept C81363708 @default.
- W3089593760 hasConceptScore W3089593760C108583219 @default.
- W3089593760 hasConceptScore W3089593760C115961682 @default.
- W3089593760 hasConceptScore W3089593760C119857082 @default.
- W3089593760 hasConceptScore W3089593760C121608353 @default.
- W3089593760 hasConceptScore W3089593760C126322002 @default.
- W3089593760 hasConceptScore W3089593760C136886441 @default.
- W3089593760 hasConceptScore W3089593760C144024400 @default.
- W3089593760 hasConceptScore W3089593760C150899416 @default.
- W3089593760 hasConceptScore W3089593760C154945302 @default.
- W3089593760 hasConceptScore W3089593760C19165224 @default.
- W3089593760 hasConceptScore W3089593760C2778220009 @default.
- W3089593760 hasConceptScore W3089593760C41008148 @default.
- W3089593760 hasConceptScore W3089593760C71924100 @default.
- W3089593760 hasConceptScore W3089593760C75294576 @default.
- W3089593760 hasConceptScore W3089593760C81363708 @default.
- W3089593760 hasLocation W30895937601 @default.
- W3089593760 hasOpenAccess W3089593760 @default.
- W3089593760 hasPrimaryLocation W30895937601 @default.
- W3089593760 hasRelatedWork W10944326 @default.
- W3089593760 hasRelatedWork W11816003 @default.
- W3089593760 hasRelatedWork W12016155 @default.
- W3089593760 hasRelatedWork W12793662 @default.
- W3089593760 hasRelatedWork W13034104 @default.
- W3089593760 hasRelatedWork W13538861 @default.
- W3089593760 hasRelatedWork W2580338 @default.
- W3089593760 hasRelatedWork W351505 @default.
- W3089593760 hasRelatedWork W7303821 @default.
- W3089593760 hasRelatedWork W9190101 @default.
- W3089593760 isParatext "false" @default.
- W3089593760 isRetracted "false" @default.
- W3089593760 magId "3089593760" @default.
- W3089593760 workType "book-chapter" @default.