Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089593850> ?p ?o ?g. }
- W3089593850 endingPage "2177" @default.
- W3089593850 startingPage "2144" @default.
- W3089593850 abstract "Abstract Decision analysis and risk analysis have grown up around a set of organizing questions: what might go wrong, how likely is it to do so, how bad might the consequences be, what should be done to maximize expected utility and minimize expected loss or regret, and how large are the remaining risks? In probabilistic causal models capable of representing unpredictable and novel events, probabilities for what will happen, and even what is possible, cannot necessarily be determined in advance. Standard decision and risk analysis questions become inherently unanswerable (“undecidable”) for realistically complex causal systems with “open‐world” uncertainties about what exists, what can happen, what other agents know, and how they will act. Recent artificial intelligence (AI) techniques enable agents (e.g., robots, drone swarms, and automatic controllers) to learn, plan, and act effectively despite open‐world uncertainties in a host of practical applications, from robotics and autonomous vehicles to industrial engineering, transportation and logistics automation, and industrial process control. This article offers an AI/machine learning perspective on recent ideas for making decision and risk analysis (even) more useful. It reviews undecidability results and recent principles and methods for enabling intelligent agents to learn what works and how to complete useful tasks, adjust plans as needed, and achieve multiple goals safely and reasonably efficiently when possible, despite open‐world uncertainties and unpredictable events. In the near future, these principles could contribute to the formulation and effective implementation of more effective plans and policies in business, regulation, and public policy, as well as in engineering, disaster management, and military and civil defense operations. They can extend traditional decision and risk analysis to deal more successfully with open‐world novelty and unpredictable events in large‐scale real‐world planning, policymaking, and risk management." @default.
- W3089593850 created "2020-10-08" @default.
- W3089593850 creator A5003499139 @default.
- W3089593850 date "2020-09-30" @default.
- W3089593850 modified "2023-09-26" @default.
- W3089593850 title "Answerable and Unanswerable Questions in Risk Analysis with Open‐World Novelty" @default.
- W3089593850 cites W1155403144 @default.
- W3089593850 cites W1486823957 @default.
- W3089593850 cites W1497341048 @default.
- W3089593850 cites W1522308973 @default.
- W3089593850 cites W1525967073 @default.
- W3089593850 cites W1549519846 @default.
- W3089593850 cites W1679945064 @default.
- W3089593850 cites W1976396143 @default.
- W3089593850 cites W1980452149 @default.
- W3089593850 cites W1991902833 @default.
- W3089593850 cites W1995511026 @default.
- W3089593850 cites W1999585781 @default.
- W3089593850 cites W2009058954 @default.
- W3089593850 cites W2020140696 @default.
- W3089593850 cites W2020311636 @default.
- W3089593850 cites W2032100464 @default.
- W3089593850 cites W2036081705 @default.
- W3089593850 cites W2036424138 @default.
- W3089593850 cites W2037088969 @default.
- W3089593850 cites W2054966003 @default.
- W3089593850 cites W2055921164 @default.
- W3089593850 cites W2058618034 @default.
- W3089593850 cites W2065597356 @default.
- W3089593850 cites W2075915368 @default.
- W3089593850 cites W2077034701 @default.
- W3089593850 cites W2086668606 @default.
- W3089593850 cites W2088956500 @default.
- W3089593850 cites W2091937574 @default.
- W3089593850 cites W2096673683 @default.
- W3089593850 cites W2104780946 @default.
- W3089593850 cites W2110715012 @default.
- W3089593850 cites W2113789941 @default.
- W3089593850 cites W2114554615 @default.
- W3089593850 cites W2122646361 @default.
- W3089593850 cites W2143117649 @default.
- W3089593850 cites W2147704565 @default.
- W3089593850 cites W2149280200 @default.
- W3089593850 cites W2154227378 @default.
- W3089593850 cites W2159544030 @default.
- W3089593850 cites W2200377579 @default.
- W3089593850 cites W2237428172 @default.
- W3089593850 cites W2296402458 @default.
- W3089593850 cites W2404068774 @default.
- W3089593850 cites W2479648088 @default.
- W3089593850 cites W2515822248 @default.
- W3089593850 cites W2533063337 @default.
- W3089593850 cites W2546070262 @default.
- W3089593850 cites W2567075875 @default.
- W3089593850 cites W2597337536 @default.
- W3089593850 cites W2606882381 @default.
- W3089593850 cites W2621832274 @default.
- W3089593850 cites W2735072884 @default.
- W3089593850 cites W2747213132 @default.
- W3089593850 cites W2755310417 @default.
- W3089593850 cites W2789290344 @default.
- W3089593850 cites W2799899844 @default.
- W3089593850 cites W2809844035 @default.
- W3089593850 cites W2901402208 @default.
- W3089593850 cites W2904197775 @default.
- W3089593850 cites W2904811519 @default.
- W3089593850 cites W2908261578 @default.
- W3089593850 cites W2935834588 @default.
- W3089593850 cites W2938421504 @default.
- W3089593850 cites W2944072504 @default.
- W3089593850 cites W2950336271 @default.
- W3089593850 cites W2953751328 @default.
- W3089593850 cites W2963062793 @default.
- W3089593850 cites W2963290226 @default.
- W3089593850 cites W2963887880 @default.
- W3089593850 cites W2965613630 @default.
- W3089593850 cites W2969958828 @default.
- W3089593850 cites W2976719742 @default.
- W3089593850 cites W2987204115 @default.
- W3089593850 cites W2992355534 @default.
- W3089593850 cites W3081229243 @default.
- W3089593850 cites W3100366369 @default.
- W3089593850 cites W3103595226 @default.
- W3089593850 cites W3104471750 @default.
- W3089593850 cites W3104956673 @default.
- W3089593850 cites W3105773083 @default.
- W3089593850 cites W3105836502 @default.
- W3089593850 cites W3126098308 @default.
- W3089593850 cites W4214717370 @default.
- W3089593850 cites W4249870550 @default.
- W3089593850 cites W435251533 @default.
- W3089593850 doi "https://doi.org/10.1111/risa.13553" @default.
- W3089593850 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33000494" @default.
- W3089593850 hasPublicationYear "2020" @default.
- W3089593850 type Work @default.
- W3089593850 sameAs 3089593850 @default.
- W3089593850 citedByCount "1" @default.
- W3089593850 countsByYear W30895938502022 @default.