Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089594915> ?p ?o ?g. }
- W3089594915 endingPage "6429" @default.
- W3089594915 startingPage "6421" @default.
- W3089594915 abstract "Purpose Contouring intraprostatic lesions is a prerequisite for dose‐escalating these lesions in radiotherapy to improve the local cancer control. In this study, a deep learning‐based approach was developed for automatic intraprostatic lesion segmentation in multiparametric magnetic resonance imaging (mpMRI) images contributing to clinical practice. Methods Multiparametric magnetic resonance imaging images from 136 patient cases were collected from our institution, and all these cases contained suspicious lesions with Prostate Imaging Reporting and Data System (PI‐RADS) score ≥ 4. The contours of the lesion and prostate were manually created on axial T2‐weighted (T2W), apparent diffusion coefficient (ADC) and high b‐value diffusion‐weighted imaging (DWI) images to provide the ground truth data. Then a multiple branch UNet (MB‐UNet) was proposed for the segmentation of an indistinct target in multi‐modality MRI images. An encoder module was designed with three branches for the three MRI modalities separately, to fully extract the high‐level features provided by different MRI modalities; an input module was added by using three sub‐branches for three consecutive image slices, to consider the contour consistency among different image slices; deep supervision strategy was also integrated into the network to speed up the convergency of the network and improve the performance. The probability maps of the background, normal prostate and lesion were output by the network to generate the segmentation of the lesion, and the performance was evaluated using the dice similarity coefficient (DSC) as the main metric. Results A total of 162 lesions were contoured on 652 image slices, with 119 lesions in the peripheral zone, 38 in the transition zone, four in the central zone and one in the anterior fibromuscular stroma. All prostates were also contoured on 1,264 image slices. As for the segmentation of lesions in the testing set, MB‐UNet achieved a per case DSC of 0.6333, specificity of 0.9993, sensitivity of 0.7056; and global DSC of 0.7205, specificity of 0.9993, sensitivity of 0.7409. All the three deep learning strategies adopted in this study contributed to the performance promotion of the MB‐UNet. Missing the DWI modality would degrade the segmentation performance more markedly compared with the other two modalities. Conclusions A deep learning‐based approach with proposed MB‐UNet was developed to automatically segment suspicious lesions in mpMRI images. This study makes it feasible to adopt boosting intraprostatic lesions in clinical practice to achieve better outcomes." @default.
- W3089594915 created "2020-10-08" @default.
- W3089594915 creator A5005317598 @default.
- W3089594915 creator A5012581106 @default.
- W3089594915 creator A5023976830 @default.
- W3089594915 creator A5025751238 @default.
- W3089594915 creator A5031290100 @default.
- W3089594915 creator A5061512571 @default.
- W3089594915 date "2020-10-24" @default.
- W3089594915 modified "2023-09-30" @default.
- W3089594915 title "Automatic intraprostatic lesion segmentation in multiparametric magnetic resonance images with proposed multiple branch UNet" @default.
- W3089594915 cites W1841941832 @default.
- W3089594915 cites W1940884224 @default.
- W3089594915 cites W1976987778 @default.
- W3089594915 cites W2027423045 @default.
- W3089594915 cites W2058782089 @default.
- W3089594915 cites W2102283130 @default.
- W3089594915 cites W2161070145 @default.
- W3089594915 cites W2208682515 @default.
- W3089594915 cites W2264183293 @default.
- W3089594915 cites W2604790786 @default.
- W3089594915 cites W2726102591 @default.
- W3089594915 cites W2748604568 @default.
- W3089594915 cites W2800850596 @default.
- W3089594915 cites W2896001621 @default.
- W3089594915 cites W2902977244 @default.
- W3089594915 cites W2907371159 @default.
- W3089594915 cites W2911188335 @default.
- W3089594915 cites W2922071185 @default.
- W3089594915 cites W2943931219 @default.
- W3089594915 cites W2949153442 @default.
- W3089594915 cites W2954400094 @default.
- W3089594915 cites W2956081249 @default.
- W3089594915 cites W2956412927 @default.
- W3089594915 cites W2963489244 @default.
- W3089594915 cites W2964227007 @default.
- W3089594915 cites W2971549026 @default.
- W3089594915 cites W2972838327 @default.
- W3089594915 cites W2979653841 @default.
- W3089594915 cites W2985140510 @default.
- W3089594915 cites W2986785750 @default.
- W3089594915 cites W3004802547 @default.
- W3089594915 cites W3103010481 @default.
- W3089594915 cites W3103835616 @default.
- W3089594915 doi "https://doi.org/10.1002/mp.14517" @default.
- W3089594915 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33012016" @default.
- W3089594915 hasPublicationYear "2020" @default.
- W3089594915 type Work @default.
- W3089594915 sameAs 3089594915 @default.
- W3089594915 citedByCount "22" @default.
- W3089594915 countsByYear W30895949152021 @default.
- W3089594915 countsByYear W30895949152022 @default.
- W3089594915 countsByYear W30895949152023 @default.
- W3089594915 crossrefType "journal-article" @default.
- W3089594915 hasAuthorship W3089594915A5005317598 @default.
- W3089594915 hasAuthorship W3089594915A5012581106 @default.
- W3089594915 hasAuthorship W3089594915A5023976830 @default.
- W3089594915 hasAuthorship W3089594915A5025751238 @default.
- W3089594915 hasAuthorship W3089594915A5031290100 @default.
- W3089594915 hasAuthorship W3089594915A5061512571 @default.
- W3089594915 hasConcept C108583219 @default.
- W3089594915 hasConcept C121608353 @default.
- W3089594915 hasConcept C121684516 @default.
- W3089594915 hasConcept C124504099 @default.
- W3089594915 hasConcept C126322002 @default.
- W3089594915 hasConcept C126838900 @default.
- W3089594915 hasConcept C142724271 @default.
- W3089594915 hasConcept C143409427 @default.
- W3089594915 hasConcept C146849305 @default.
- W3089594915 hasConcept C154945302 @default.
- W3089594915 hasConcept C163892561 @default.
- W3089594915 hasConcept C201645570 @default.
- W3089594915 hasConcept C2779104521 @default.
- W3089594915 hasConcept C2780192828 @default.
- W3089594915 hasConcept C2780226545 @default.
- W3089594915 hasConcept C2781156865 @default.
- W3089594915 hasConcept C2989005 @default.
- W3089594915 hasConcept C41008148 @default.
- W3089594915 hasConcept C509974204 @default.
- W3089594915 hasConcept C70816921 @default.
- W3089594915 hasConcept C71924100 @default.
- W3089594915 hasConcept C89600930 @default.
- W3089594915 hasConceptScore W3089594915C108583219 @default.
- W3089594915 hasConceptScore W3089594915C121608353 @default.
- W3089594915 hasConceptScore W3089594915C121684516 @default.
- W3089594915 hasConceptScore W3089594915C124504099 @default.
- W3089594915 hasConceptScore W3089594915C126322002 @default.
- W3089594915 hasConceptScore W3089594915C126838900 @default.
- W3089594915 hasConceptScore W3089594915C142724271 @default.
- W3089594915 hasConceptScore W3089594915C143409427 @default.
- W3089594915 hasConceptScore W3089594915C146849305 @default.
- W3089594915 hasConceptScore W3089594915C154945302 @default.
- W3089594915 hasConceptScore W3089594915C163892561 @default.
- W3089594915 hasConceptScore W3089594915C201645570 @default.
- W3089594915 hasConceptScore W3089594915C2779104521 @default.
- W3089594915 hasConceptScore W3089594915C2780192828 @default.
- W3089594915 hasConceptScore W3089594915C2780226545 @default.
- W3089594915 hasConceptScore W3089594915C2781156865 @default.