Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089595546> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3089595546 endingPage "100006" @default.
- W3089595546 startingPage "100006" @default.
- W3089595546 abstract "Psychiatric patients, such as those suffering from depression or schizophrenia, often need to be monitored with frequent clinical interviews by trained professionals to avoid costly emergency care and preventable events. However, there simply are not enough clinicians to monitor these patients on a regular basis. Furthermore, infrequent clinical evaluations may result in clinicians missing subtle changes in patient state that occur over time. These limitations can affect both the quality, timeliness, and monetary expense of treatment. Therefore, we leveraged smart devices to implement traditional neuropsychological assessments such that they could be collected frequently, remotely, and - when viable - self-administered by the participants themselves. This approach enables the generation of an enormous quantity of data across time and different assessments. Machine learning-based methods hold the potential to automatically analyze streams of behavioral and cognitive data, such as speech and movement, and convert them to actionable events. We examined the viability of the automation of a comprehensive assessment pipeline, from administration of neuropsychological tests, to transcription of spoken responses, to an analysis of data to predict clinical states. In the present research, we examined this pipeline in 353 participants (of whom 134 were patients with a range of diagnoses of psychosis spectrum disorders, substance abuse disorders, and affective disorders, and 219 were non-patient volunteers who were presumed to be healthy). We found that machine learning-based methods can be applied to this data in order to reliably and accurately assess the neuropsychological function of individuals. Among other applications, we were able to automatically score completion of a verbal recall task and predict emotional state via spoken language, thereby opening the potential for regular, frequent analyses of cognitive and mental states." @default.
- W3089595546 created "2020-10-08" @default.
- W3089595546 creator A5002724929 @default.
- W3089595546 creator A5019489674 @default.
- W3089595546 creator A5019978507 @default.
- W3089595546 creator A5026665489 @default.
- W3089595546 creator A5035630445 @default.
- W3089595546 creator A5047892086 @default.
- W3089595546 creator A5078212143 @default.
- W3089595546 creator A5082669876 @default.
- W3089595546 date "2020-11-01" @default.
- W3089595546 modified "2023-10-17" @default.
- W3089595546 title "Machine learning for ambulatory applications of neuropsychological testing" @default.
- W3089595546 cites W1267646904 @default.
- W3089595546 cites W2003128044 @default.
- W3089595546 cites W2022386623 @default.
- W3089595546 cites W2044445916 @default.
- W3089595546 cites W2093973716 @default.
- W3089595546 cites W2149628368 @default.
- W3089595546 cites W2158900081 @default.
- W3089595546 cites W2158997610 @default.
- W3089595546 cites W2217720538 @default.
- W3089595546 cites W2759174152 @default.
- W3089595546 cites W2791063712 @default.
- W3089595546 cites W2795307842 @default.
- W3089595546 cites W2913560175 @default.
- W3089595546 cites W2916774767 @default.
- W3089595546 cites W2947761389 @default.
- W3089595546 cites W2963232155 @default.
- W3089595546 cites W3011561281 @default.
- W3089595546 cites W3193202534 @default.
- W3089595546 doi "https://doi.org/10.1016/j.ibmed.2020.100006" @default.
- W3089595546 hasPublicationYear "2020" @default.
- W3089595546 type Work @default.
- W3089595546 sameAs 3089595546 @default.
- W3089595546 citedByCount "8" @default.
- W3089595546 countsByYear W30895955462021 @default.
- W3089595546 countsByYear W30895955462022 @default.
- W3089595546 countsByYear W30895955462023 @default.
- W3089595546 crossrefType "journal-article" @default.
- W3089595546 hasAuthorship W3089595546A5002724929 @default.
- W3089595546 hasAuthorship W3089595546A5019489674 @default.
- W3089595546 hasAuthorship W3089595546A5019978507 @default.
- W3089595546 hasAuthorship W3089595546A5026665489 @default.
- W3089595546 hasAuthorship W3089595546A5035630445 @default.
- W3089595546 hasAuthorship W3089595546A5047892086 @default.
- W3089595546 hasAuthorship W3089595546A5078212143 @default.
- W3089595546 hasAuthorship W3089595546A5082669876 @default.
- W3089595546 hasBestOaLocation W30895955461 @default.
- W3089595546 hasConcept C118552586 @default.
- W3089595546 hasConcept C119857082 @default.
- W3089595546 hasConcept C14216870 @default.
- W3089595546 hasConcept C142724271 @default.
- W3089595546 hasConcept C15744967 @default.
- W3089595546 hasConcept C169900460 @default.
- W3089595546 hasConcept C41008148 @default.
- W3089595546 hasConcept C534262118 @default.
- W3089595546 hasConcept C536788834 @default.
- W3089595546 hasConcept C70410870 @default.
- W3089595546 hasConcept C71924100 @default.
- W3089595546 hasConceptScore W3089595546C118552586 @default.
- W3089595546 hasConceptScore W3089595546C119857082 @default.
- W3089595546 hasConceptScore W3089595546C14216870 @default.
- W3089595546 hasConceptScore W3089595546C142724271 @default.
- W3089595546 hasConceptScore W3089595546C15744967 @default.
- W3089595546 hasConceptScore W3089595546C169900460 @default.
- W3089595546 hasConceptScore W3089595546C41008148 @default.
- W3089595546 hasConceptScore W3089595546C534262118 @default.
- W3089595546 hasConceptScore W3089595546C536788834 @default.
- W3089595546 hasConceptScore W3089595546C70410870 @default.
- W3089595546 hasConceptScore W3089595546C71924100 @default.
- W3089595546 hasFunder F4320323299 @default.
- W3089595546 hasLocation W30895955461 @default.
- W3089595546 hasOpenAccess W3089595546 @default.
- W3089595546 hasPrimaryLocation W30895955461 @default.
- W3089595546 hasRelatedWork W108310996 @default.
- W3089595546 hasRelatedWork W2003129198 @default.
- W3089595546 hasRelatedWork W2068100119 @default.
- W3089595546 hasRelatedWork W2088565811 @default.
- W3089595546 hasRelatedWork W2200354386 @default.
- W3089595546 hasRelatedWork W2400584828 @default.
- W3089595546 hasRelatedWork W2531951620 @default.
- W3089595546 hasRelatedWork W2550020660 @default.
- W3089595546 hasRelatedWork W3158484907 @default.
- W3089595546 hasRelatedWork W4245857179 @default.
- W3089595546 hasVolume "1-2" @default.
- W3089595546 isParatext "false" @default.
- W3089595546 isRetracted "false" @default.
- W3089595546 magId "3089595546" @default.
- W3089595546 workType "article" @default.