Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089595613> ?p ?o ?g. }
- W3089595613 endingPage "95" @default.
- W3089595613 startingPage "83" @default.
- W3089595613 abstract "There have been successful applications of deep learning to functional magnetic resonance imaging (fMRI), where fMRI data were mostly considered to be structured grids, and spatial features from Euclidean neighbors were usually extracted by the convolutional neural networks (CNNs) in the computer vision field. Recently, CNN has been extended to graph data and demonstrated superior performance. Here, we define graphs based on functional connectivity and present a connectivity-based graph convolutional network (cGCN) architecture for fMRI analysis. Such an approach allows us to extract spatial features from connectomic neighborhoods rather than from Euclidean ones, consistent with the functional organization of the brain. To evaluate the performance of cGCN, we applied it to two scenarios with resting-state fMRI data. One is individual identification of healthy participants and the other is classification of autistic patients from normal controls. Our results indicate that cGCN can effectively capture functional connectivity features in fMRI analysis for relevant applications." @default.
- W3089595613 created "2020-10-08" @default.
- W3089595613 creator A5032770951 @default.
- W3089595613 creator A5046996087 @default.
- W3089595613 creator A5066306251 @default.
- W3089595613 date "2021-01-01" @default.
- W3089595613 modified "2023-10-16" @default.
- W3089595613 title "Graph convolutional network for fMRI analysis based on connectivity neighborhood" @default.
- W3089595613 cites W1901129140 @default.
- W3089595613 cites W1940423692 @default.
- W3089595613 cites W1983208069 @default.
- W3089595613 cites W1999653836 @default.
- W3089595613 cites W2024729467 @default.
- W3089595613 cites W2031677665 @default.
- W3089595613 cites W2037035617 @default.
- W3089595613 cites W2070450901 @default.
- W3089595613 cites W2073588997 @default.
- W3089595613 cites W2089572795 @default.
- W3089595613 cites W2092818848 @default.
- W3089595613 cites W2095491050 @default.
- W3089595613 cites W2095921032 @default.
- W3089595613 cites W2098724504 @default.
- W3089595613 cites W2106396500 @default.
- W3089595613 cites W2111902267 @default.
- W3089595613 cites W2120759354 @default.
- W3089595613 cites W2122457251 @default.
- W3089595613 cites W2130671706 @default.
- W3089595613 cites W2157106546 @default.
- W3089595613 cites W2157446241 @default.
- W3089595613 cites W2167868121 @default.
- W3089595613 cites W2238108400 @default.
- W3089595613 cites W2295675667 @default.
- W3089595613 cites W2483297124 @default.
- W3089595613 cites W2522628945 @default.
- W3089595613 cites W2557111525 @default.
- W3089595613 cites W2558460151 @default.
- W3089595613 cites W2567599812 @default.
- W3089595613 cites W2588517580 @default.
- W3089595613 cites W2751527031 @default.
- W3089595613 cites W2752558629 @default.
- W3089595613 cites W2779020697 @default.
- W3089595613 cites W2795344136 @default.
- W3089595613 cites W2807122651 @default.
- W3089595613 cites W2927384312 @default.
- W3089595613 cites W2942086449 @default.
- W3089595613 doi "https://doi.org/10.1162/netn_a_00171" @default.
- W3089595613 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7935029" @default.
- W3089595613 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33688607" @default.
- W3089595613 hasPublicationYear "2021" @default.
- W3089595613 type Work @default.
- W3089595613 sameAs 3089595613 @default.
- W3089595613 citedByCount "30" @default.
- W3089595613 countsByYear W30895956132021 @default.
- W3089595613 countsByYear W30895956132022 @default.
- W3089595613 countsByYear W30895956132023 @default.
- W3089595613 crossrefType "journal-article" @default.
- W3089595613 hasAuthorship W3089595613A5032770951 @default.
- W3089595613 hasAuthorship W3089595613A5046996087 @default.
- W3089595613 hasAuthorship W3089595613A5066306251 @default.
- W3089595613 hasBestOaLocation W30895956131 @default.
- W3089595613 hasConcept C106937863 @default.
- W3089595613 hasConcept C114614502 @default.
- W3089595613 hasConcept C132525143 @default.
- W3089595613 hasConcept C153180895 @default.
- W3089595613 hasConcept C154945302 @default.
- W3089595613 hasConcept C15744967 @default.
- W3089595613 hasConcept C169760540 @default.
- W3089595613 hasConcept C2779226451 @default.
- W3089595613 hasConcept C3018011982 @default.
- W3089595613 hasConcept C33923547 @default.
- W3089595613 hasConcept C41008148 @default.
- W3089595613 hasConcept C66324658 @default.
- W3089595613 hasConcept C80444323 @default.
- W3089595613 hasConcept C81363708 @default.
- W3089595613 hasConcept C88230418 @default.
- W3089595613 hasConceptScore W3089595613C106937863 @default.
- W3089595613 hasConceptScore W3089595613C114614502 @default.
- W3089595613 hasConceptScore W3089595613C132525143 @default.
- W3089595613 hasConceptScore W3089595613C153180895 @default.
- W3089595613 hasConceptScore W3089595613C154945302 @default.
- W3089595613 hasConceptScore W3089595613C15744967 @default.
- W3089595613 hasConceptScore W3089595613C169760540 @default.
- W3089595613 hasConceptScore W3089595613C2779226451 @default.
- W3089595613 hasConceptScore W3089595613C3018011982 @default.
- W3089595613 hasConceptScore W3089595613C33923547 @default.
- W3089595613 hasConceptScore W3089595613C41008148 @default.
- W3089595613 hasConceptScore W3089595613C66324658 @default.
- W3089595613 hasConceptScore W3089595613C80444323 @default.
- W3089595613 hasConceptScore W3089595613C81363708 @default.
- W3089595613 hasConceptScore W3089595613C88230418 @default.
- W3089595613 hasIssue "1" @default.
- W3089595613 hasLocation W30895956131 @default.
- W3089595613 hasLocation W30895956132 @default.
- W3089595613 hasLocation W30895956133 @default.
- W3089595613 hasOpenAccess W3089595613 @default.
- W3089595613 hasPrimaryLocation W30895956131 @default.
- W3089595613 hasRelatedWork W1978305832 @default.
- W3089595613 hasRelatedWork W2112287678 @default.