Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089598502> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3089598502 endingPage "7109" @default.
- W3089598502 startingPage "7095" @default.
- W3089598502 abstract "Data characteristics are often summarized and represented by a set of variables. Identifying the relationship between these variables is crucial for prediction, hypothesis testing, and decision making. The relation between two variables is often quantified using a correlation factor. Once the correlation between a response and an independent variable is quantified, it can be used to make predictions regarding response variable for the observed factor. That is, if two variables are correlated, by observing one, we can make predictions about the other one. A more accurate prediction can be made where there is strong relationship between variables. Several correlation factors have been introduced. Among them, Pearson’s Correlation Coefficient has been commonly used, while Distance Correlation and Maximal Information Coefficient have been recently introduced to address the shortcomings of Pearson’s Correlation Coefficient. These correlation coefficients are developed to measure associations in different trends. For example, Pearson’s Correlation is used when dealing with linear trends while Spearman’s correlation is used when dealing with monotonic trends. However, in many applications, the underlying relationship is not obvious to determine the appropriate choice of the correlation coefficient. In this paper, we compare these factors through a series of simulations and we propose a single generic factor by aggregating these factors for general applications." @default.
- W3089598502 created "2020-10-08" @default.
- W3089598502 creator A5073288182 @default.
- W3089598502 creator A5085896504 @default.
- W3089598502 date "2020-10-04" @default.
- W3089598502 modified "2023-10-02" @default.
- W3089598502 title "Monte Carlo ensemble correlation coefficient for association detection" @default.
- W3089598502 cites W1492535541 @default.
- W3089598502 cites W1999303581 @default.
- W3089598502 cites W2018582985 @default.
- W3089598502 cites W2030748132 @default.
- W3089598502 cites W2040704490 @default.
- W3089598502 cites W2078483536 @default.
- W3089598502 cites W2080722576 @default.
- W3089598502 cites W2149350210 @default.
- W3089598502 cites W2165700458 @default.
- W3089598502 cites W2479858884 @default.
- W3089598502 cites W3106063097 @default.
- W3089598502 cites W4253315077 @default.
- W3089598502 doi "https://doi.org/10.1080/03610918.2020.1823413" @default.
- W3089598502 hasPublicationYear "2020" @default.
- W3089598502 type Work @default.
- W3089598502 sameAs 3089598502 @default.
- W3089598502 citedByCount "1" @default.
- W3089598502 countsByYear W30895985022023 @default.
- W3089598502 crossrefType "journal-article" @default.
- W3089598502 hasAuthorship W3089598502A5073288182 @default.
- W3089598502 hasAuthorship W3089598502A5085896504 @default.
- W3089598502 hasConcept C103423394 @default.
- W3089598502 hasConcept C105795698 @default.
- W3089598502 hasConcept C106366893 @default.
- W3089598502 hasConcept C117220453 @default.
- W3089598502 hasConcept C121694360 @default.
- W3089598502 hasConcept C122123141 @default.
- W3089598502 hasConcept C159744936 @default.
- W3089598502 hasConcept C19499675 @default.
- W3089598502 hasConcept C2524010 @default.
- W3089598502 hasConcept C27574286 @default.
- W3089598502 hasConcept C2780092901 @default.
- W3089598502 hasConcept C33923547 @default.
- W3089598502 hasConcept C48921125 @default.
- W3089598502 hasConcept C55078378 @default.
- W3089598502 hasConcept C64708745 @default.
- W3089598502 hasConceptScore W3089598502C103423394 @default.
- W3089598502 hasConceptScore W3089598502C105795698 @default.
- W3089598502 hasConceptScore W3089598502C106366893 @default.
- W3089598502 hasConceptScore W3089598502C117220453 @default.
- W3089598502 hasConceptScore W3089598502C121694360 @default.
- W3089598502 hasConceptScore W3089598502C122123141 @default.
- W3089598502 hasConceptScore W3089598502C159744936 @default.
- W3089598502 hasConceptScore W3089598502C19499675 @default.
- W3089598502 hasConceptScore W3089598502C2524010 @default.
- W3089598502 hasConceptScore W3089598502C27574286 @default.
- W3089598502 hasConceptScore W3089598502C2780092901 @default.
- W3089598502 hasConceptScore W3089598502C33923547 @default.
- W3089598502 hasConceptScore W3089598502C48921125 @default.
- W3089598502 hasConceptScore W3089598502C55078378 @default.
- W3089598502 hasConceptScore W3089598502C64708745 @default.
- W3089598502 hasIssue "12" @default.
- W3089598502 hasLocation W30895985021 @default.
- W3089598502 hasOpenAccess W3089598502 @default.
- W3089598502 hasPrimaryLocation W30895985021 @default.
- W3089598502 hasRelatedWork W2123233148 @default.
- W3089598502 hasRelatedWork W2146096861 @default.
- W3089598502 hasRelatedWork W2418545440 @default.
- W3089598502 hasRelatedWork W2553575642 @default.
- W3089598502 hasRelatedWork W2560331580 @default.
- W3089598502 hasRelatedWork W2591818399 @default.
- W3089598502 hasRelatedWork W2793350103 @default.
- W3089598502 hasRelatedWork W3013810674 @default.
- W3089598502 hasRelatedWork W4200439127 @default.
- W3089598502 hasRelatedWork W4247004236 @default.
- W3089598502 hasVolume "51" @default.
- W3089598502 isParatext "false" @default.
- W3089598502 isRetracted "false" @default.
- W3089598502 magId "3089598502" @default.
- W3089598502 workType "article" @default.