Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089628124> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3089628124 abstract "Learning across domains is challenging especially when test data in target domain are sparse, heterogeneous and unlabeled. This challenge is even severe when building a deep stochastic neural model. This paper presents a stochastic semi-supervised learning for domain adaptation by using labeled data from source domain and unlabeled data from target domain. There are twofold novelties in the proposed method. First, a graphical model is constructed to identify the random latent features for classes as well as domains which are learned by variational inference. Second, we learn the class features which are discriminative among classes and simultaneously invariant to both domains. An adversarial neural model is introduced to pursue domain invariance. The domain features are explicitly learned to purify the extraction of class features for an improved classification. The experiments on sentiment classification illustrate the merits of the proposed stochastic adversarial domain adaptation." @default.
- W3089628124 created "2020-10-08" @default.
- W3089628124 creator A5061908942 @default.
- W3089628124 creator A5077571392 @default.
- W3089628124 date "2020-07-01" @default.
- W3089628124 modified "2023-09-25" @default.
- W3089628124 title "Stochastic Adversarial Learning for Domain Adaptation" @default.
- W3089628124 cites W1975954951 @default.
- W3089628124 cites W2002870907 @default.
- W3089628124 cites W2025854503 @default.
- W3089628124 cites W2115403315 @default.
- W3089628124 cites W2207593006 @default.
- W3089628124 cites W2775654873 @default.
- W3089628124 cites W2786656445 @default.
- W3089628124 cites W2888473984 @default.
- W3089628124 cites W2952068867 @default.
- W3089628124 cites W2964109570 @default.
- W3089628124 cites W2973099347 @default.
- W3089628124 cites W2988016942 @default.
- W3089628124 cites W2989031637 @default.
- W3089628124 cites W3007146018 @default.
- W3089628124 cites W3015301038 @default.
- W3089628124 doi "https://doi.org/10.1109/ijcnn48605.2020.9207478" @default.
- W3089628124 hasPublicationYear "2020" @default.
- W3089628124 type Work @default.
- W3089628124 sameAs 3089628124 @default.
- W3089628124 citedByCount "2" @default.
- W3089628124 countsByYear W30896281242022 @default.
- W3089628124 countsByYear W30896281242023 @default.
- W3089628124 crossrefType "proceedings-article" @default.
- W3089628124 hasAuthorship W3089628124A5061908942 @default.
- W3089628124 hasAuthorship W3089628124A5077571392 @default.
- W3089628124 hasConcept C108583219 @default.
- W3089628124 hasConcept C119857082 @default.
- W3089628124 hasConcept C134306372 @default.
- W3089628124 hasConcept C153180895 @default.
- W3089628124 hasConcept C154945302 @default.
- W3089628124 hasConcept C190470478 @default.
- W3089628124 hasConcept C2776214188 @default.
- W3089628124 hasConcept C2776434776 @default.
- W3089628124 hasConcept C2777212361 @default.
- W3089628124 hasConcept C33923547 @default.
- W3089628124 hasConcept C36503486 @default.
- W3089628124 hasConcept C37736160 @default.
- W3089628124 hasConcept C37914503 @default.
- W3089628124 hasConcept C41008148 @default.
- W3089628124 hasConcept C95623464 @default.
- W3089628124 hasConcept C97931131 @default.
- W3089628124 hasConceptScore W3089628124C108583219 @default.
- W3089628124 hasConceptScore W3089628124C119857082 @default.
- W3089628124 hasConceptScore W3089628124C134306372 @default.
- W3089628124 hasConceptScore W3089628124C153180895 @default.
- W3089628124 hasConceptScore W3089628124C154945302 @default.
- W3089628124 hasConceptScore W3089628124C190470478 @default.
- W3089628124 hasConceptScore W3089628124C2776214188 @default.
- W3089628124 hasConceptScore W3089628124C2776434776 @default.
- W3089628124 hasConceptScore W3089628124C2777212361 @default.
- W3089628124 hasConceptScore W3089628124C33923547 @default.
- W3089628124 hasConceptScore W3089628124C36503486 @default.
- W3089628124 hasConceptScore W3089628124C37736160 @default.
- W3089628124 hasConceptScore W3089628124C37914503 @default.
- W3089628124 hasConceptScore W3089628124C41008148 @default.
- W3089628124 hasConceptScore W3089628124C95623464 @default.
- W3089628124 hasConceptScore W3089628124C97931131 @default.
- W3089628124 hasLocation W30896281241 @default.
- W3089628124 hasOpenAccess W3089628124 @default.
- W3089628124 hasPrimaryLocation W30896281241 @default.
- W3089628124 hasRelatedWork W12361542 @default.
- W3089628124 hasRelatedWork W13118573 @default.
- W3089628124 hasRelatedWork W1354071 @default.
- W3089628124 hasRelatedWork W14187060 @default.
- W3089628124 hasRelatedWork W15029578 @default.
- W3089628124 hasRelatedWork W2405783 @default.
- W3089628124 hasRelatedWork W4649193 @default.
- W3089628124 hasRelatedWork W4806451 @default.
- W3089628124 hasRelatedWork W8614678 @default.
- W3089628124 hasRelatedWork W868042 @default.
- W3089628124 isParatext "false" @default.
- W3089628124 isRetracted "false" @default.
- W3089628124 magId "3089628124" @default.
- W3089628124 workType "article" @default.