Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089628165> ?p ?o ?g. }
Showing items 1 to 48 of
48
with 100 items per page.
- W3089628165 abstract "The nodes of a graph existing in a specific cluster are more likely to connect to each other than with other nodes in the graph. Then revealing some information about the nodes, the structure of the graph (the graph edges) provides this opportunity to know more information about the other nodes. From this perspective, this paper revisits the node classification task in a semi-supervised scenario by graph convolutional neural network. The goal is to benefit from the flow of information that circulates around the revealed node labels. For this aim, this paper provides a new graph convolutional neural network architecture. This architecture benefits efficiently from the revealed training nodes, the node features, and the graph structure. On the other hand, in many applications, non-graph observations (side information) exist beside a given graph realization. The non-graph observations are usually independent of the graph structure. This paper shows that the proposed architecture is also powerful in combining a graph realization and independent non-graph observations. For both cases, the experiments on the synthetic and real-world datasets demonstrate that our proposed architecture achieves a higher prediction accuracy in comparison to the existing state-of-the-art methods for the node classification task." @default.
- W3089628165 created "2020-10-08" @default.
- W3089628165 creator A5002859357 @default.
- W3089628165 creator A5062861585 @default.
- W3089628165 date "2020-09-29" @default.
- W3089628165 modified "2023-09-23" @default.
- W3089628165 title "New GCNN-Based Architecture for Semi-Supervised Node Classification." @default.
- W3089628165 hasPublicationYear "2020" @default.
- W3089628165 type Work @default.
- W3089628165 sameAs 3089628165 @default.
- W3089628165 citedByCount "1" @default.
- W3089628165 countsByYear W30896281652022 @default.
- W3089628165 crossrefType "posted-content" @default.
- W3089628165 hasAuthorship W3089628165A5002859357 @default.
- W3089628165 hasAuthorship W3089628165A5062861585 @default.
- W3089628165 hasConcept C132525143 @default.
- W3089628165 hasConcept C41008148 @default.
- W3089628165 hasConcept C80444323 @default.
- W3089628165 hasConceptScore W3089628165C132525143 @default.
- W3089628165 hasConceptScore W3089628165C41008148 @default.
- W3089628165 hasConceptScore W3089628165C80444323 @default.
- W3089628165 hasLocation W30896281651 @default.
- W3089628165 hasOpenAccess W3089628165 @default.
- W3089628165 hasPrimaryLocation W30896281651 @default.
- W3089628165 hasRelatedWork W2935184916 @default.
- W3089628165 hasRelatedWork W2955729488 @default.
- W3089628165 hasRelatedWork W2958092922 @default.
- W3089628165 hasRelatedWork W2989985603 @default.
- W3089628165 hasRelatedWork W2999426717 @default.
- W3089628165 hasRelatedWork W3013336437 @default.
- W3089628165 hasRelatedWork W3021801498 @default.
- W3089628165 hasRelatedWork W3033565791 @default.
- W3089628165 hasRelatedWork W3049144784 @default.
- W3089628165 hasRelatedWork W3082154031 @default.
- W3089628165 hasRelatedWork W3086430417 @default.
- W3089628165 hasRelatedWork W3114101231 @default.
- W3089628165 hasRelatedWork W3119579551 @default.
- W3089628165 hasRelatedWork W3128129382 @default.
- W3089628165 hasRelatedWork W3135958006 @default.
- W3089628165 hasRelatedWork W3173856251 @default.
- W3089628165 hasRelatedWork W3199999577 @default.
- W3089628165 hasRelatedWork W3200997335 @default.
- W3089628165 hasRelatedWork W3208015335 @default.
- W3089628165 hasRelatedWork W3210265791 @default.
- W3089628165 isParatext "false" @default.
- W3089628165 isRetracted "false" @default.
- W3089628165 magId "3089628165" @default.
- W3089628165 workType "article" @default.