Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089653695> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W3089653695 abstract "Sparse matrix multiplication (SPMM) is widely used for various machine learning algorithms. With advancements in big-data processing, the importance of distributed SPMM processing becomes important for handling large-scale datasets. We conducted thorough experiments using various distributed SPMM implementations and discovered considerable performance variations for distinct datasets and scenarios. To provide an optimal SPMM execution environment, we propose features that represent SPMM task characteristics. Using these features, we propose building a tree-based nonlinear gradient boosting (GB) regressor model that presents superb prediction accuracy across diverse distributed SPMM implementations and datasets." @default.
- W3089653695 created "2020-10-08" @default.
- W3089653695 creator A5006735153 @default.
- W3089653695 creator A5064954515 @default.
- W3089653695 date "2020-08-01" @default.
- W3089653695 modified "2023-10-16" @default.
- W3089653695 title "Performance Prediction of Sparse Matrix Multiplication on a Distributed BigData Processing Environment" @default.
- W3089653695 cites W1678356000 @default.
- W3089653695 cites W1947869163 @default.
- W3089653695 cites W2117539524 @default.
- W3089653695 cites W2135695572 @default.
- W3089653695 cites W2216541755 @default.
- W3089653695 cites W26556108 @default.
- W3089653695 cites W2890255536 @default.
- W3089653695 cites W2985883838 @default.
- W3089653695 cites W784772322 @default.
- W3089653695 doi "https://doi.org/10.1109/acsos-c51401.2020.00025" @default.
- W3089653695 hasPublicationYear "2020" @default.
- W3089653695 type Work @default.
- W3089653695 sameAs 3089653695 @default.
- W3089653695 citedByCount "1" @default.
- W3089653695 countsByYear W30896536952021 @default.
- W3089653695 crossrefType "proceedings-article" @default.
- W3089653695 hasAuthorship W3089653695A5006735153 @default.
- W3089653695 hasAuthorship W3089653695A5064954515 @default.
- W3089653695 hasConcept C106516650 @default.
- W3089653695 hasConcept C11413529 @default.
- W3089653695 hasConcept C121332964 @default.
- W3089653695 hasConcept C154945302 @default.
- W3089653695 hasConcept C17349429 @default.
- W3089653695 hasConcept C199360897 @default.
- W3089653695 hasConcept C26713055 @default.
- W3089653695 hasConcept C41008148 @default.
- W3089653695 hasConcept C62520636 @default.
- W3089653695 hasConcept C84114770 @default.
- W3089653695 hasConceptScore W3089653695C106516650 @default.
- W3089653695 hasConceptScore W3089653695C11413529 @default.
- W3089653695 hasConceptScore W3089653695C121332964 @default.
- W3089653695 hasConceptScore W3089653695C154945302 @default.
- W3089653695 hasConceptScore W3089653695C17349429 @default.
- W3089653695 hasConceptScore W3089653695C199360897 @default.
- W3089653695 hasConceptScore W3089653695C26713055 @default.
- W3089653695 hasConceptScore W3089653695C41008148 @default.
- W3089653695 hasConceptScore W3089653695C62520636 @default.
- W3089653695 hasConceptScore W3089653695C84114770 @default.
- W3089653695 hasLocation W30896536951 @default.
- W3089653695 hasOpenAccess W3089653695 @default.
- W3089653695 hasPrimaryLocation W30896536951 @default.
- W3089653695 hasRelatedWork W1485630101 @default.
- W3089653695 hasRelatedWork W1596157658 @default.
- W3089653695 hasRelatedWork W1824798286 @default.
- W3089653695 hasRelatedWork W1964111820 @default.
- W3089653695 hasRelatedWork W2083338789 @default.
- W3089653695 hasRelatedWork W2112690207 @default.
- W3089653695 hasRelatedWork W2158757796 @default.
- W3089653695 hasRelatedWork W2741796204 @default.
- W3089653695 hasRelatedWork W4244853187 @default.
- W3089653695 hasRelatedWork W1501086624 @default.
- W3089653695 isParatext "false" @default.
- W3089653695 isRetracted "false" @default.
- W3089653695 magId "3089653695" @default.
- W3089653695 workType "article" @default.