Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089656492> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3089656492 endingPage "102854" @default.
- W3089656492 startingPage "102854" @default.
- W3089656492 abstract "Deep Neural Networks (DNNs) have achieved impressive success in the domain of Euclidean data such as image. However, designing deep neural network to cluster nodes especially in social networks is still a challenging task. Moreover, recent advanced methods for node clustering have focused on learning node embedding, upon which classic clustering algorithms like K-means are applied. Nevertheless, the resulting node embeddings are customarily task-agnostic. This results in the fact that the performance of clustering is difficult to guarantee. To effectively mitigate the problem, in this paper, we propose a novel clustering-oriented node embedding method named Deep Node Clustering (DNC) for non-attributed network data by resorting to deep neural networks. We first present a preprocessing method via adopting a random surfing model to capture graph structural information directly. Subsequently, we propose to learn a deep clustering network, which could jointly learn node embeddings and cluster assignments. Extensive experiments on three real-world network datasets for node clustering are conducted, which demonstrate that the proposed DNC substantially outperforms the state-of-the-art node clustering methods." @default.
- W3089656492 created "2020-10-08" @default.
- W3089656492 creator A5035694792 @default.
- W3089656492 creator A5047421795 @default.
- W3089656492 creator A5047698512 @default.
- W3089656492 creator A5088602677 @default.
- W3089656492 date "2021-01-01" @default.
- W3089656492 modified "2023-09-27" @default.
- W3089656492 title "DNC: A Deep Neural Network-based Clustering-oriented Network Embedding Algorithm" @default.
- W3089656492 cites W2163922914 @default.
- W3089656492 cites W2405933695 @default.
- W3089656492 cites W2415243320 @default.
- W3089656492 cites W2603986758 @default.
- W3089656492 cites W2604942799 @default.
- W3089656492 cites W2622489478 @default.
- W3089656492 cites W2741943936 @default.
- W3089656492 cites W2756388459 @default.
- W3089656492 cites W2792550408 @default.
- W3089656492 cites W2793868694 @default.
- W3089656492 cites W2908529777 @default.
- W3089656492 cites W2913350752 @default.
- W3089656492 cites W2919115771 @default.
- W3089656492 cites W2950352474 @default.
- W3089656492 cites W2950723285 @default.
- W3089656492 cites W2950765122 @default.
- W3089656492 cites W2962975498 @default.
- W3089656492 cites W2963169753 @default.
- W3089656492 cites W2964732194 @default.
- W3089656492 cites W2979811255 @default.
- W3089656492 cites W2992372890 @default.
- W3089656492 cites W2997412521 @default.
- W3089656492 cites W2999320175 @default.
- W3089656492 cites W3019494121 @default.
- W3089656492 cites W3025114004 @default.
- W3089656492 doi "https://doi.org/10.1016/j.jnca.2020.102854" @default.
- W3089656492 hasPublicationYear "2021" @default.
- W3089656492 type Work @default.
- W3089656492 sameAs 3089656492 @default.
- W3089656492 citedByCount "14" @default.
- W3089656492 countsByYear W30896564922021 @default.
- W3089656492 countsByYear W30896564922022 @default.
- W3089656492 countsByYear W30896564922023 @default.
- W3089656492 crossrefType "journal-article" @default.
- W3089656492 hasAuthorship W3089656492A5035694792 @default.
- W3089656492 hasAuthorship W3089656492A5047421795 @default.
- W3089656492 hasAuthorship W3089656492A5047698512 @default.
- W3089656492 hasAuthorship W3089656492A5088602677 @default.
- W3089656492 hasConcept C108583219 @default.
- W3089656492 hasConcept C124101348 @default.
- W3089656492 hasConcept C127413603 @default.
- W3089656492 hasConcept C154945302 @default.
- W3089656492 hasConcept C22047676 @default.
- W3089656492 hasConcept C34736171 @default.
- W3089656492 hasConcept C41008148 @default.
- W3089656492 hasConcept C41608201 @default.
- W3089656492 hasConcept C50644808 @default.
- W3089656492 hasConcept C62611344 @default.
- W3089656492 hasConcept C66938386 @default.
- W3089656492 hasConcept C73555534 @default.
- W3089656492 hasConceptScore W3089656492C108583219 @default.
- W3089656492 hasConceptScore W3089656492C124101348 @default.
- W3089656492 hasConceptScore W3089656492C127413603 @default.
- W3089656492 hasConceptScore W3089656492C154945302 @default.
- W3089656492 hasConceptScore W3089656492C22047676 @default.
- W3089656492 hasConceptScore W3089656492C34736171 @default.
- W3089656492 hasConceptScore W3089656492C41008148 @default.
- W3089656492 hasConceptScore W3089656492C41608201 @default.
- W3089656492 hasConceptScore W3089656492C50644808 @default.
- W3089656492 hasConceptScore W3089656492C62611344 @default.
- W3089656492 hasConceptScore W3089656492C66938386 @default.
- W3089656492 hasConceptScore W3089656492C73555534 @default.
- W3089656492 hasFunder F4320321001 @default.
- W3089656492 hasFunder F4320335787 @default.
- W3089656492 hasLocation W30896564921 @default.
- W3089656492 hasOpenAccess W3089656492 @default.
- W3089656492 hasPrimaryLocation W30896564921 @default.
- W3089656492 hasRelatedWork W2410085756 @default.
- W3089656492 hasRelatedWork W2903193238 @default.
- W3089656492 hasRelatedWork W2963958000 @default.
- W3089656492 hasRelatedWork W3195938642 @default.
- W3089656492 hasRelatedWork W4290612991 @default.
- W3089656492 hasRelatedWork W4301772310 @default.
- W3089656492 hasRelatedWork W4313289316 @default.
- W3089656492 hasRelatedWork W4322155169 @default.
- W3089656492 hasRelatedWork W4377967120 @default.
- W3089656492 hasRelatedWork W2566086483 @default.
- W3089656492 hasVolume "173" @default.
- W3089656492 isParatext "false" @default.
- W3089656492 isRetracted "false" @default.
- W3089656492 magId "3089656492" @default.
- W3089656492 workType "article" @default.