Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089666422> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3089666422 abstract "The automatic segmentation of Achilles tendon tissues is one of the preliminary steps towards creating a tool for diagnosing, prognosing, or monitoring changes in tendon organization over time. Manual delineation is the current approach of identifying Achilles region-of-interest (ROI), it is a tedious and time-consuming task. In this respect, the current work describes the first steps taken towards creating an automatic approach for Achilles tendon segmentation that utilize the capabilities of Deep Convolutional Neural Networks (CNNs). Firstly, the dataset has been pre-processed and manually segmented to be used as the ground-truth in the training and testing of the proposed automated model. Secondly, the model was trained and validated using three CNN architectures SegNet, ResNet-18 and ResNet-50. Finally, Tversky loss function, 3D augmentation and network ensembling approaches were used to improve the segmentation performance and to tackle challenges such as the limited size of the training dataset and data imbalance. The proposed fully automated segmentation method reached average Dice score of 0.904. In conclusion, this novel study demonstrates that a CNN approach is useful for performing accurate Achilles tendon segmentation in musculoskeletal imaging." @default.
- W3089666422 created "2020-10-08" @default.
- W3089666422 creator A5015554601 @default.
- W3089666422 creator A5020010475 @default.
- W3089666422 creator A5026057041 @default.
- W3089666422 creator A5032772753 @default.
- W3089666422 creator A5039133093 @default.
- W3089666422 creator A5046144886 @default.
- W3089666422 creator A5056299105 @default.
- W3089666422 creator A5077932717 @default.
- W3089666422 creator A5083396008 @default.
- W3089666422 date "2020-01-01" @default.
- W3089666422 modified "2023-10-18" @default.
- W3089666422 title "Automatic Segmentation of Achilles Tendon Tissues Using Deep Convolutional Neural Network" @default.
- W3089666422 cites W1589654730 @default.
- W3089666422 cites W1973707108 @default.
- W3089666422 cites W1978651740 @default.
- W3089666422 cites W2021902394 @default.
- W3089666422 cites W2026000791 @default.
- W3089666422 cites W2031280537 @default.
- W3089666422 cites W2043885061 @default.
- W3089666422 cites W2051731945 @default.
- W3089666422 cites W2058112135 @default.
- W3089666422 cites W2073632465 @default.
- W3089666422 cites W2097117768 @default.
- W3089666422 cites W2098484245 @default.
- W3089666422 cites W2101446279 @default.
- W3089666422 cites W2153431772 @default.
- W3089666422 cites W2165170333 @default.
- W3089666422 cites W2194775991 @default.
- W3089666422 cites W2546302380 @default.
- W3089666422 cites W2907079194 @default.
- W3089666422 cites W2962895999 @default.
- W3089666422 cites W2963881378 @default.
- W3089666422 cites W2964098128 @default.
- W3089666422 doi "https://doi.org/10.1007/978-3-030-59861-7_45" @default.
- W3089666422 hasPublicationYear "2020" @default.
- W3089666422 type Work @default.
- W3089666422 sameAs 3089666422 @default.
- W3089666422 citedByCount "0" @default.
- W3089666422 crossrefType "book-chapter" @default.
- W3089666422 hasAuthorship W3089666422A5015554601 @default.
- W3089666422 hasAuthorship W3089666422A5020010475 @default.
- W3089666422 hasAuthorship W3089666422A5026057041 @default.
- W3089666422 hasAuthorship W3089666422A5032772753 @default.
- W3089666422 hasAuthorship W3089666422A5039133093 @default.
- W3089666422 hasAuthorship W3089666422A5046144886 @default.
- W3089666422 hasAuthorship W3089666422A5056299105 @default.
- W3089666422 hasAuthorship W3089666422A5077932717 @default.
- W3089666422 hasAuthorship W3089666422A5083396008 @default.
- W3089666422 hasConcept C105702510 @default.
- W3089666422 hasConcept C108583219 @default.
- W3089666422 hasConcept C124504099 @default.
- W3089666422 hasConcept C146849305 @default.
- W3089666422 hasConcept C153180895 @default.
- W3089666422 hasConcept C154945302 @default.
- W3089666422 hasConcept C2780105995 @default.
- W3089666422 hasConcept C2780984734 @default.
- W3089666422 hasConcept C31972630 @default.
- W3089666422 hasConcept C41008148 @default.
- W3089666422 hasConcept C50644808 @default.
- W3089666422 hasConcept C71924100 @default.
- W3089666422 hasConcept C81363708 @default.
- W3089666422 hasConcept C89600930 @default.
- W3089666422 hasConceptScore W3089666422C105702510 @default.
- W3089666422 hasConceptScore W3089666422C108583219 @default.
- W3089666422 hasConceptScore W3089666422C124504099 @default.
- W3089666422 hasConceptScore W3089666422C146849305 @default.
- W3089666422 hasConceptScore W3089666422C153180895 @default.
- W3089666422 hasConceptScore W3089666422C154945302 @default.
- W3089666422 hasConceptScore W3089666422C2780105995 @default.
- W3089666422 hasConceptScore W3089666422C2780984734 @default.
- W3089666422 hasConceptScore W3089666422C31972630 @default.
- W3089666422 hasConceptScore W3089666422C41008148 @default.
- W3089666422 hasConceptScore W3089666422C50644808 @default.
- W3089666422 hasConceptScore W3089666422C71924100 @default.
- W3089666422 hasConceptScore W3089666422C81363708 @default.
- W3089666422 hasConceptScore W3089666422C89600930 @default.
- W3089666422 hasLocation W30896664221 @default.
- W3089666422 hasOpenAccess W3089666422 @default.
- W3089666422 hasPrimaryLocation W30896664221 @default.
- W3089666422 hasRelatedWork W11130107 @default.
- W3089666422 hasRelatedWork W12703013 @default.
- W3089666422 hasRelatedWork W14128562 @default.
- W3089666422 hasRelatedWork W1446482 @default.
- W3089666422 hasRelatedWork W2233117 @default.
- W3089666422 hasRelatedWork W2366400 @default.
- W3089666422 hasRelatedWork W274842 @default.
- W3089666422 hasRelatedWork W4608154 @default.
- W3089666422 hasRelatedWork W4797066 @default.
- W3089666422 hasRelatedWork W3000238 @default.
- W3089666422 isParatext "false" @default.
- W3089666422 isRetracted "false" @default.
- W3089666422 magId "3089666422" @default.
- W3089666422 workType "book-chapter" @default.