Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089672375> ?p ?o ?g. }
- W3089672375 abstract "Significance: The reliability of functional near-infrared spectroscopy (fNIRS) measurements is reduced by systemic physiology. Short-channel regression algorithms aim at removing systemic “noise” by subtracting the signal measured at a short source–detector separation (mainly scalp hemodynamics) from the one of a long separation (brain and scalp hemodynamics). In literature, incongruent approaches on the selection of the optimal regressor signal are reported based on different assumptions on scalp hemodynamics properties. Aim: We investigated the spatial and temporal distribution of scalp hemodynamics over the sensorimotor cortex and evaluated its influence on the effectiveness of short-channel regressions. Approach: We performed hand-grasping and resting-state experiments with five subjects, measuring with 16 optodes over sensorimotor areas, including eight 8-mm channels. We performed detailed correlation analyses of scalp hemodynamics and evaluated 180 hand-grasping and 270 simulated (overlaid on resting-state measurements) trials. Five short-channel regressor combinations were implemented with general linear models. Three were chosen according to literature, and two were proposed based on additional physiological assumptions [considering multiple short channels and their Mayer wave (MW) oscillations]. Results: We found heterogeneous hemodynamics in the scalp, coming on top of a global close-to-homogeneous behavior (correlation 0.69 to 0.92). The results further demonstrate that short-channel regression always improves brain activity estimates but that better results are obtained when heterogeneity is assumed. In particular, we highlight that short-channel regression is more effective when combining multiple scalp regressors and when MWs are additionally included. Conclusion: We shed light on the selection of optimal regressor signals for improving the removal of systemic physiological artifacts in fNIRS. We conclude that short-channel regression is most effective when assuming heterogeneous hemodynamics, in particular when combining spatial- and frequency-specific information. A better understanding of scalp hemodynamics and more effective short-channel regression will promote more accurate assessments of functional brain activity in clinical and research settings." @default.
- W3089672375 created "2020-10-08" @default.
- W3089672375 creator A5028092015 @default.
- W3089672375 creator A5049420900 @default.
- W3089672375 creator A5051702844 @default.
- W3089672375 creator A5053084972 @default.
- W3089672375 creator A5073005521 @default.
- W3089672375 creator A5090970191 @default.
- W3089672375 date "2020-09-29" @default.
- W3089672375 modified "2023-09-30" @default.
- W3089672375 title "Short-channel regression in functional near-infrared spectroscopy is more effective when considering heterogeneous scalp hemodynamics" @default.
- W3089672375 cites W1505333444 @default.
- W3089672375 cites W1581457739 @default.
- W3089672375 cites W1606854720 @default.
- W3089672375 cites W1879141805 @default.
- W3089672375 cites W1963668068 @default.
- W3089672375 cites W1966705045 @default.
- W3089672375 cites W1969756335 @default.
- W3089672375 cites W1986218677 @default.
- W3089672375 cites W1987143349 @default.
- W3089672375 cites W1987292515 @default.
- W3089672375 cites W1987906173 @default.
- W3089672375 cites W1996623766 @default.
- W3089672375 cites W1996776986 @default.
- W3089672375 cites W1998663768 @default.
- W3089672375 cites W2003725570 @default.
- W3089672375 cites W2003867730 @default.
- W3089672375 cites W2007884967 @default.
- W3089672375 cites W2011026399 @default.
- W3089672375 cites W2011550515 @default.
- W3089672375 cites W2013507252 @default.
- W3089672375 cites W2016015580 @default.
- W3089672375 cites W2025564775 @default.
- W3089672375 cites W2026337283 @default.
- W3089672375 cites W2026382511 @default.
- W3089672375 cites W2029802912 @default.
- W3089672375 cites W2036431866 @default.
- W3089672375 cites W2037458212 @default.
- W3089672375 cites W2040896410 @default.
- W3089672375 cites W2042730494 @default.
- W3089672375 cites W2045434413 @default.
- W3089672375 cites W2052521734 @default.
- W3089672375 cites W2054996700 @default.
- W3089672375 cites W2058604352 @default.
- W3089672375 cites W2063398621 @default.
- W3089672375 cites W2071853069 @default.
- W3089672375 cites W2080497943 @default.
- W3089672375 cites W2085844694 @default.
- W3089672375 cites W2087987478 @default.
- W3089672375 cites W2092890379 @default.
- W3089672375 cites W2093938194 @default.
- W3089672375 cites W2099051993 @default.
- W3089672375 cites W2102771656 @default.
- W3089672375 cites W2104402415 @default.
- W3089672375 cites W2114510322 @default.
- W3089672375 cites W2115806236 @default.
- W3089672375 cites W2120720467 @default.
- W3089672375 cites W2123179036 @default.
- W3089672375 cites W2125956101 @default.
- W3089672375 cites W2130603606 @default.
- W3089672375 cites W2136779322 @default.
- W3089672375 cites W2139759629 @default.
- W3089672375 cites W2151110252 @default.
- W3089672375 cites W2151129382 @default.
- W3089672375 cites W2165201535 @default.
- W3089672375 cites W2170797424 @default.
- W3089672375 cites W2322926025 @default.
- W3089672375 cites W2419321653 @default.
- W3089672375 cites W2465511308 @default.
- W3089672375 cites W2493830446 @default.
- W3089672375 cites W2513548613 @default.
- W3089672375 cites W2522892351 @default.
- W3089672375 cites W2603613117 @default.
- W3089672375 cites W2740778497 @default.
- W3089672375 cites W2745914289 @default.
- W3089672375 cites W2757019567 @default.
- W3089672375 cites W2793655178 @default.
- W3089672375 cites W2909619163 @default.
- W3089672375 cites W2910269539 @default.
- W3089672375 cites W2943755188 @default.
- W3089672375 cites W2952560166 @default.
- W3089672375 cites W2966316009 @default.
- W3089672375 cites W2983631207 @default.
- W3089672375 cites W2995583741 @default.
- W3089672375 doi "https://doi.org/10.1117/1.nph.7.3.035011" @default.
- W3089672375 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7523733" @default.
- W3089672375 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33029548" @default.
- W3089672375 hasPublicationYear "2020" @default.
- W3089672375 type Work @default.
- W3089672375 sameAs 3089672375 @default.
- W3089672375 citedByCount "33" @default.
- W3089672375 countsByYear W30896723752020 @default.
- W3089672375 countsByYear W30896723752021 @default.
- W3089672375 countsByYear W30896723752022 @default.
- W3089672375 countsByYear W30896723752023 @default.
- W3089672375 crossrefType "journal-article" @default.
- W3089672375 hasAuthorship W3089672375A5028092015 @default.
- W3089672375 hasAuthorship W3089672375A5049420900 @default.
- W3089672375 hasAuthorship W3089672375A5051702844 @default.
- W3089672375 hasAuthorship W3089672375A5053084972 @default.