Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089673584> ?p ?o ?g. }
- W3089673584 abstract "The outbreak of COVID-19 i.e. a variation of coronavirus, also known as novel corona virus causing respiratory disease is a big concern worldwide since the end of December 2019. As of September 12, 2020, it has turned into an epidemic outbreak with more than 29 million confirmed cases and around 1 million reported deaths worldwide. It has created an urgent need to monitor and forecast COVID-19 spread behavior to better control this spread. Among all the popular models for COVID-19 forecasting, statistical models are receiving much attention in media. However, statistical models are showing less accuracy for long term forecasting, as there is high level of uncertainty and required data is also not sufficiently available. In this paper, we propose a comparative analysis of deep learning models to forecast the COVID-19 outbreak as an alternative to statistical models. We propose a new Attention-based encoder-decoder model, named Attention-Long Short Term Memory (AttentionLSTM). LSTM based neural network layer architecture incorporates the idea of fine-grained attention mechanism i.e., attention on hidden state dimensions instead of hidden state vector itself, which is capable of highlighting the importance and contribution of each hidden state dimension. It helps in detection on crucial temporal information, resulting in a highly interpretable network. Additionally, we implement a learnable vector embedding for time. As, time in a vector representation can be easily added with many architectures. This vector representation is called Time2Vec. We have used COVID-19 data repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University to assess the proposed model's performance. The proposed model give superior forecasting accuracy compared to other existing methods." @default.
- W3089673584 created "2020-10-08" @default.
- W3089673584 creator A5035178587 @default.
- W3089673584 creator A5075206346 @default.
- W3089673584 creator A5077278150 @default.
- W3089673584 creator A5081683515 @default.
- W3089673584 date "2020-09-30" @default.
- W3089673584 modified "2023-09-22" @default.
- W3089673584 title "A Deep Learning Framework for COVID Outbreak Prediction" @default.
- W3089673584 cites W1966238900 @default.
- W3089673584 cites W2053293344 @default.
- W3089673584 cites W2064675550 @default.
- W3089673584 cites W2082521207 @default.
- W3089673584 cites W2084147132 @default.
- W3089673584 cites W2227495319 @default.
- W3089673584 cites W2534644646 @default.
- W3089673584 cites W2765587036 @default.
- W3089673584 cites W2765932895 @default.
- W3089673584 cites W2777314154 @default.
- W3089673584 cites W2800867346 @default.
- W3089673584 cites W2952382660 @default.
- W3089673584 cites W2957988017 @default.
- W3089673584 cites W2961631520 @default.
- W3089673584 cites W2962878352 @default.
- W3089673584 cites W2963766945 @default.
- W3089673584 cites W2964199361 @default.
- W3089673584 cites W2969855422 @default.
- W3089673584 cites W2973630029 @default.
- W3089673584 cites W2983744909 @default.
- W3089673584 cites W2986202533 @default.
- W3089673584 cites W2989236667 @default.
- W3089673584 cites W3001118548 @default.
- W3089673584 cites W3002539152 @default.
- W3089673584 cites W3002812395 @default.
- W3089673584 cites W3005118804 @default.
- W3089673584 cites W3006559495 @default.
- W3089673584 cites W3010223921 @default.
- W3089673584 cites W3011771926 @default.
- W3089673584 cites W3011815162 @default.
- W3089673584 cites W3012354890 @default.
- W3089673584 cites W3019351867 @default.
- W3089673584 cites W3022122691 @default.
- W3089673584 cites W3022787740 @default.
- W3089673584 cites W3030631368 @default.
- W3089673584 cites W3031293910 @default.
- W3089673584 cites W3033562259 @default.
- W3089673584 hasPublicationYear "2020" @default.
- W3089673584 type Work @default.
- W3089673584 sameAs 3089673584 @default.
- W3089673584 citedByCount "1" @default.
- W3089673584 countsByYear W30896735842021 @default.
- W3089673584 crossrefType "posted-content" @default.
- W3089673584 hasAuthorship W3089673584A5035178587 @default.
- W3089673584 hasAuthorship W3089673584A5075206346 @default.
- W3089673584 hasAuthorship W3089673584A5077278150 @default.
- W3089673584 hasAuthorship W3089673584A5081683515 @default.
- W3089673584 hasConcept C101738243 @default.
- W3089673584 hasConcept C108583219 @default.
- W3089673584 hasConcept C119857082 @default.
- W3089673584 hasConcept C124101348 @default.
- W3089673584 hasConcept C142724271 @default.
- W3089673584 hasConcept C147168706 @default.
- W3089673584 hasConcept C154945302 @default.
- W3089673584 hasConcept C17744445 @default.
- W3089673584 hasConcept C199539241 @default.
- W3089673584 hasConcept C202444582 @default.
- W3089673584 hasConcept C2776359362 @default.
- W3089673584 hasConcept C2779134260 @default.
- W3089673584 hasConcept C3008058167 @default.
- W3089673584 hasConcept C33676613 @default.
- W3089673584 hasConcept C33923547 @default.
- W3089673584 hasConcept C41008148 @default.
- W3089673584 hasConcept C50644808 @default.
- W3089673584 hasConcept C524204448 @default.
- W3089673584 hasConcept C71924100 @default.
- W3089673584 hasConcept C94625758 @default.
- W3089673584 hasConceptScore W3089673584C101738243 @default.
- W3089673584 hasConceptScore W3089673584C108583219 @default.
- W3089673584 hasConceptScore W3089673584C119857082 @default.
- W3089673584 hasConceptScore W3089673584C124101348 @default.
- W3089673584 hasConceptScore W3089673584C142724271 @default.
- W3089673584 hasConceptScore W3089673584C147168706 @default.
- W3089673584 hasConceptScore W3089673584C154945302 @default.
- W3089673584 hasConceptScore W3089673584C17744445 @default.
- W3089673584 hasConceptScore W3089673584C199539241 @default.
- W3089673584 hasConceptScore W3089673584C202444582 @default.
- W3089673584 hasConceptScore W3089673584C2776359362 @default.
- W3089673584 hasConceptScore W3089673584C2779134260 @default.
- W3089673584 hasConceptScore W3089673584C3008058167 @default.
- W3089673584 hasConceptScore W3089673584C33676613 @default.
- W3089673584 hasConceptScore W3089673584C33923547 @default.
- W3089673584 hasConceptScore W3089673584C41008148 @default.
- W3089673584 hasConceptScore W3089673584C50644808 @default.
- W3089673584 hasConceptScore W3089673584C524204448 @default.
- W3089673584 hasConceptScore W3089673584C71924100 @default.
- W3089673584 hasConceptScore W3089673584C94625758 @default.
- W3089673584 hasLocation W30896735841 @default.
- W3089673584 hasOpenAccess W3089673584 @default.
- W3089673584 hasPrimaryLocation W30896735841 @default.
- W3089673584 hasRelatedWork W152599545 @default.