Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089716443> ?p ?o ?g. }
- W3089716443 abstract "Machine Learning (ML) and particularly Deep Learning (DL) continue to advance rapidly, attracting the attention of the health imaging community to apply these techniques to increase the precision of cancer screening. The most common cancer in women is breast cancer that affects more than 2 million women each year and causes the largest number of deaths from cancer in the female population." @default.
- W3089716443 created "2020-10-08" @default.
- W3089716443 creator A5052911404 @default.
- W3089716443 creator A5074020115 @default.
- W3089716443 date "2020-01-01" @default.
- W3089716443 modified "2023-10-08" @default.
- W3089716443 title "Deep Learning Algorithms for Diagnosis of Breast Cancer with Maximum Likelihood Estimation" @default.
- W3089716443 cites W1983024255 @default.
- W3089716443 cites W2190746225 @default.
- W3089716443 cites W2194775991 @default.
- W3089716443 cites W2284539364 @default.
- W3089716443 cites W2418166239 @default.
- W3089716443 cites W2515717359 @default.
- W3089716443 cites W2592929672 @default.
- W3089716443 cites W2767410506 @default.
- W3089716443 cites W2771248105 @default.
- W3089716443 cites W2772603135 @default.
- W3089716443 cites W2772723798 @default.
- W3089716443 cites W2778854158 @default.
- W3089716443 cites W2779396040 @default.
- W3089716443 cites W2783597708 @default.
- W3089716443 cites W2783710041 @default.
- W3089716443 cites W2785645041 @default.
- W3089716443 cites W2789357239 @default.
- W3089716443 cites W2791915981 @default.
- W3089716443 cites W2791942584 @default.
- W3089716443 cites W2793919748 @default.
- W3089716443 cites W2800002784 @default.
- W3089716443 cites W2803773316 @default.
- W3089716443 cites W2888804473 @default.
- W3089716443 cites W2890622142 @default.
- W3089716443 cites W2892235178 @default.
- W3089716443 cites W2893032930 @default.
- W3089716443 cites W2898577718 @default.
- W3089716443 cites W2898662614 @default.
- W3089716443 cites W2906622753 @default.
- W3089716443 cites W2906658447 @default.
- W3089716443 cites W2912230971 @default.
- W3089716443 cites W2921148628 @default.
- W3089716443 cites W2921857021 @default.
- W3089716443 cites W2925358072 @default.
- W3089716443 cites W2963395517 @default.
- W3089716443 cites W2966563027 @default.
- W3089716443 cites W2970091429 @default.
- W3089716443 cites W3005546201 @default.
- W3089716443 cites W3023179483 @default.
- W3089716443 doi "https://doi.org/10.1007/978-3-030-58802-1_35" @default.
- W3089716443 hasPublicationYear "2020" @default.
- W3089716443 type Work @default.
- W3089716443 sameAs 3089716443 @default.
- W3089716443 citedByCount "1" @default.
- W3089716443 countsByYear W30897164432021 @default.
- W3089716443 crossrefType "book-chapter" @default.
- W3089716443 hasAuthorship W3089716443A5052911404 @default.
- W3089716443 hasAuthorship W3089716443A5074020115 @default.
- W3089716443 hasConcept C105795698 @default.
- W3089716443 hasConcept C108583219 @default.
- W3089716443 hasConcept C11413529 @default.
- W3089716443 hasConcept C119857082 @default.
- W3089716443 hasConcept C121608353 @default.
- W3089716443 hasConcept C126322002 @default.
- W3089716443 hasConcept C154945302 @default.
- W3089716443 hasConcept C162324750 @default.
- W3089716443 hasConcept C187736073 @default.
- W3089716443 hasConcept C2908647359 @default.
- W3089716443 hasConcept C33923547 @default.
- W3089716443 hasConcept C41008148 @default.
- W3089716443 hasConcept C49781872 @default.
- W3089716443 hasConcept C530470458 @default.
- W3089716443 hasConcept C71924100 @default.
- W3089716443 hasConcept C96250715 @default.
- W3089716443 hasConcept C99454951 @default.
- W3089716443 hasConceptScore W3089716443C105795698 @default.
- W3089716443 hasConceptScore W3089716443C108583219 @default.
- W3089716443 hasConceptScore W3089716443C11413529 @default.
- W3089716443 hasConceptScore W3089716443C119857082 @default.
- W3089716443 hasConceptScore W3089716443C121608353 @default.
- W3089716443 hasConceptScore W3089716443C126322002 @default.
- W3089716443 hasConceptScore W3089716443C154945302 @default.
- W3089716443 hasConceptScore W3089716443C162324750 @default.
- W3089716443 hasConceptScore W3089716443C187736073 @default.
- W3089716443 hasConceptScore W3089716443C2908647359 @default.
- W3089716443 hasConceptScore W3089716443C33923547 @default.
- W3089716443 hasConceptScore W3089716443C41008148 @default.
- W3089716443 hasConceptScore W3089716443C49781872 @default.
- W3089716443 hasConceptScore W3089716443C530470458 @default.
- W3089716443 hasConceptScore W3089716443C71924100 @default.
- W3089716443 hasConceptScore W3089716443C96250715 @default.
- W3089716443 hasConceptScore W3089716443C99454951 @default.
- W3089716443 hasLocation W30897164431 @default.
- W3089716443 hasOpenAccess W3089716443 @default.
- W3089716443 hasPrimaryLocation W30897164431 @default.
- W3089716443 hasRelatedWork W10321813 @default.
- W3089716443 hasRelatedWork W10356211 @default.
- W3089716443 hasRelatedWork W11023528 @default.
- W3089716443 hasRelatedWork W11297145 @default.
- W3089716443 hasRelatedWork W12428677 @default.
- W3089716443 hasRelatedWork W3540334 @default.
- W3089716443 hasRelatedWork W6083205 @default.
- W3089716443 hasRelatedWork W6296663 @default.