Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089732347> ?p ?o ?g. }
- W3089732347 endingPage "1428" @default.
- W3089732347 startingPage "1416" @default.
- W3089732347 abstract "We study the scheduling of large-scale electric vehicle (EV) charging in a power distribution network under random renewable generation and electricity prices. The problem is formulated as a stochastic dynamic program with unknown state transition probability. To mitigate the curse of dimensionality, we establish the nodal multi-target (NMT) characterization of the optimal scheduling policy: all EVs with the same deadline at the same bus should be charged to approach a single target of remaining energy demand. We prove that the NMT characterization is optimal under arbitrarily random system dynamics. To adaptively learn the dynamics of system uncertainty, we propose a model-free soft-actor-critic (SAC) based method to determine the target levels for the characterized NMT policy. The proposed SAC + NMT approach significantly outperforms existing deep reinforcement learning methods (in our numerical experiments on the IEEE 37-node test feeder), as the established NMT characterization sharply reduces the dimensionality of neural network outputs without loss of optimality." @default.
- W3089732347 created "2020-10-08" @default.
- W3089732347 creator A5028612373 @default.
- W3089732347 creator A5081111856 @default.
- W3089732347 date "2021-03-01" @default.
- W3089732347 modified "2023-09-29" @default.
- W3089732347 title "Optimal Policy Characterization Enhanced Actor-Critic Approach for Electric Vehicle Charging Scheduling in a Power Distribution Network" @default.
- W3089732347 cites W1852166568 @default.
- W3089732347 cites W1937574340 @default.
- W3089732347 cites W1995884781 @default.
- W3089732347 cites W2001021292 @default.
- W3089732347 cites W2032489938 @default.
- W3089732347 cites W2074628584 @default.
- W3089732347 cites W2077440620 @default.
- W3089732347 cites W2092860676 @default.
- W3089732347 cites W2120678009 @default.
- W3089732347 cites W2137983211 @default.
- W3089732347 cites W2145339207 @default.
- W3089732347 cites W2272308828 @default.
- W3089732347 cites W2277948250 @default.
- W3089732347 cites W2342546046 @default.
- W3089732347 cites W2342981086 @default.
- W3089732347 cites W2343829863 @default.
- W3089732347 cites W2398882882 @default.
- W3089732347 cites W2471802579 @default.
- W3089732347 cites W2515947593 @default.
- W3089732347 cites W2520556032 @default.
- W3089732347 cites W2521029103 @default.
- W3089732347 cites W2586852908 @default.
- W3089732347 cites W2747366356 @default.
- W3089732347 cites W2766955960 @default.
- W3089732347 cites W2886939378 @default.
- W3089732347 cites W2899639849 @default.
- W3089732347 cites W2963912072 @default.
- W3089732347 cites W2982557718 @default.
- W3089732347 cites W2983887688 @default.
- W3089732347 cites W2990466689 @default.
- W3089732347 cites W4241079583 @default.
- W3089732347 doi "https://doi.org/10.1109/tsg.2020.3028470" @default.
- W3089732347 hasPublicationYear "2021" @default.
- W3089732347 type Work @default.
- W3089732347 sameAs 3089732347 @default.
- W3089732347 citedByCount "34" @default.
- W3089732347 countsByYear W30897323472021 @default.
- W3089732347 countsByYear W30897323472022 @default.
- W3089732347 countsByYear W30897323472023 @default.
- W3089732347 crossrefType "journal-article" @default.
- W3089732347 hasAuthorship W3089732347A5028612373 @default.
- W3089732347 hasAuthorship W3089732347A5081111856 @default.
- W3089732347 hasConcept C105795698 @default.
- W3089732347 hasConcept C111030470 @default.
- W3089732347 hasConcept C11413529 @default.
- W3089732347 hasConcept C121332964 @default.
- W3089732347 hasConcept C126255220 @default.
- W3089732347 hasConcept C154945302 @default.
- W3089732347 hasConcept C163258240 @default.
- W3089732347 hasConcept C206729178 @default.
- W3089732347 hasConcept C2776422217 @default.
- W3089732347 hasConcept C33923547 @default.
- W3089732347 hasConcept C37404715 @default.
- W3089732347 hasConcept C41008148 @default.
- W3089732347 hasConcept C50644808 @default.
- W3089732347 hasConcept C62520636 @default.
- W3089732347 hasConcept C8272713 @default.
- W3089732347 hasConcept C97541855 @default.
- W3089732347 hasConceptScore W3089732347C105795698 @default.
- W3089732347 hasConceptScore W3089732347C111030470 @default.
- W3089732347 hasConceptScore W3089732347C11413529 @default.
- W3089732347 hasConceptScore W3089732347C121332964 @default.
- W3089732347 hasConceptScore W3089732347C126255220 @default.
- W3089732347 hasConceptScore W3089732347C154945302 @default.
- W3089732347 hasConceptScore W3089732347C163258240 @default.
- W3089732347 hasConceptScore W3089732347C206729178 @default.
- W3089732347 hasConceptScore W3089732347C2776422217 @default.
- W3089732347 hasConceptScore W3089732347C33923547 @default.
- W3089732347 hasConceptScore W3089732347C37404715 @default.
- W3089732347 hasConceptScore W3089732347C41008148 @default.
- W3089732347 hasConceptScore W3089732347C50644808 @default.
- W3089732347 hasConceptScore W3089732347C62520636 @default.
- W3089732347 hasConceptScore W3089732347C8272713 @default.
- W3089732347 hasConceptScore W3089732347C97541855 @default.
- W3089732347 hasFunder F4320322942 @default.
- W3089732347 hasIssue "2" @default.
- W3089732347 hasLocation W30897323471 @default.
- W3089732347 hasOpenAccess W3089732347 @default.
- W3089732347 hasPrimaryLocation W30897323471 @default.
- W3089732347 hasRelatedWork W2018694622 @default.
- W3089732347 hasRelatedWork W2125964040 @default.
- W3089732347 hasRelatedWork W2384809557 @default.
- W3089732347 hasRelatedWork W2810708635 @default.
- W3089732347 hasRelatedWork W2953183007 @default.
- W3089732347 hasRelatedWork W2996383434 @default.
- W3089732347 hasRelatedWork W3024399153 @default.
- W3089732347 hasRelatedWork W3089732347 @default.
- W3089732347 hasRelatedWork W3177476324 @default.
- W3089732347 hasRelatedWork W4285662656 @default.
- W3089732347 hasVolume "12" @default.
- W3089732347 isParatext "false" @default.