Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089732834> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3089732834 endingPage "1031" @default.
- W3089732834 startingPage "1026" @default.
- W3089732834 abstract "ObjectiveTo describe a computer algorithm designed for in vitro fertilization (IVF) management and to assess the algorithm’s accuracy in the day-to-day decision making during ovarian stimulation for IVF when compared to evidence-based decisions by the clinical team.DesignDescriptive and comparative study of new technology.SettingPrivate fertility practice.Intervention(s)None.Patient(s)Data were derived from monitoring during ovarian stimulation from IVF cycles. The database consisted of 2,603 cycles (1,853 autologous and 750 donor cycles) incorporating 7,376 visits for training. An additional 556 unique cycles were used for challenge and to calculate accuracy. There were 59,706 data points. Input variables included estradiol concentrations in picograms per milliliter; ultrasound measurements of follicle diameters in two dimensions in millimeters; cycle day during stimulation and dose of recombinant follicle-stimulating hormone during ovarian stimulation for IVF.Main Outcome Measure(s)Accuracy of the algorithm to predict four critical clinical decisions during ovarian stimulation for IVF: [1] stop stimulation or continue stimulation. If the decision was to stop, then the next automated decision was to [2] trigger or cancel. If the decision was to return, then the next key decisions were [3] number of days to follow-up and [4] whether any dosage adjustment was needed.Result(s)Algorithm accuracies for these four decisions are as follows: continue or stop treatment: 0.92; trigger and schedule oocyte retrieval or cancel cycle: 0.96; dose of medication adjustment: 0.82; and number of days to follow-up: 0.87. These accuracies are for first iteration of the algorithm.Conclusion(s)We describe a first iteration of a predictive analytic algorithm that is highly accurate and in agreement with evidence-based decisions by expert teams during ovarian stimulation during IVF. These tools offer a potential platform to optimize clinical decision making during IVF. To describe a computer algorithm designed for in vitro fertilization (IVF) management and to assess the algorithm’s accuracy in the day-to-day decision making during ovarian stimulation for IVF when compared to evidence-based decisions by the clinical team. Descriptive and comparative study of new technology. Private fertility practice. None. Data were derived from monitoring during ovarian stimulation from IVF cycles. The database consisted of 2,603 cycles (1,853 autologous and 750 donor cycles) incorporating 7,376 visits for training. An additional 556 unique cycles were used for challenge and to calculate accuracy. There were 59,706 data points. Input variables included estradiol concentrations in picograms per milliliter; ultrasound measurements of follicle diameters in two dimensions in millimeters; cycle day during stimulation and dose of recombinant follicle-stimulating hormone during ovarian stimulation for IVF. Accuracy of the algorithm to predict four critical clinical decisions during ovarian stimulation for IVF: [1] stop stimulation or continue stimulation. If the decision was to stop, then the next automated decision was to [2] trigger or cancel. If the decision was to return, then the next key decisions were [3] number of days to follow-up and [4] whether any dosage adjustment was needed. Algorithm accuracies for these four decisions are as follows: continue or stop treatment: 0.92; trigger and schedule oocyte retrieval or cancel cycle: 0.96; dose of medication adjustment: 0.82; and number of days to follow-up: 0.87. These accuracies are for first iteration of the algorithm. We describe a first iteration of a predictive analytic algorithm that is highly accurate and in agreement with evidence-based decisions by expert teams during ovarian stimulation during IVF. These tools offer a potential platform to optimize clinical decision making during IVF." @default.
- W3089732834 created "2020-10-08" @default.
- W3089732834 creator A5080436648 @default.
- W3089732834 creator A5080740069 @default.
- W3089732834 date "2020-11-01" @default.
- W3089732834 modified "2023-10-16" @default.
- W3089732834 title "Artificial intelligence in in vitro fertilization: a computer decision support system for day-to-day management of ovarian stimulation during in vitro fertilization" @default.
- W3089732834 cites W2073924861 @default.
- W3089732834 cites W2158842434 @default.
- W3089732834 cites W2265738736 @default.
- W3089732834 cites W2801005005 @default.
- W3089732834 cites W2907479062 @default.
- W3089732834 cites W2944872342 @default.
- W3089732834 cites W2950574850 @default.
- W3089732834 cites W2953532875 @default.
- W3089732834 cites W2971940192 @default.
- W3089732834 cites W2972914641 @default.
- W3089732834 doi "https://doi.org/10.1016/j.fertnstert.2020.06.006" @default.
- W3089732834 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33012555" @default.
- W3089732834 hasPublicationYear "2020" @default.
- W3089732834 type Work @default.
- W3089732834 sameAs 3089732834 @default.
- W3089732834 citedByCount "28" @default.
- W3089732834 countsByYear W30897328342020 @default.
- W3089732834 countsByYear W30897328342021 @default.
- W3089732834 countsByYear W30897328342022 @default.
- W3089732834 countsByYear W30897328342023 @default.
- W3089732834 crossrefType "journal-article" @default.
- W3089732834 hasAuthorship W3089732834A5080436648 @default.
- W3089732834 hasAuthorship W3089732834A5080740069 @default.
- W3089732834 hasBestOaLocation W30897328341 @default.
- W3089732834 hasConcept C126322002 @default.
- W3089732834 hasConcept C16685009 @default.
- W3089732834 hasConcept C196843134 @default.
- W3089732834 hasConcept C24998067 @default.
- W3089732834 hasConcept C2776690073 @default.
- W3089732834 hasConcept C2777904497 @default.
- W3089732834 hasConcept C2779234561 @default.
- W3089732834 hasConcept C2908647359 @default.
- W3089732834 hasConcept C512716672 @default.
- W3089732834 hasConcept C518429986 @default.
- W3089732834 hasConcept C54355233 @default.
- W3089732834 hasConcept C71924100 @default.
- W3089732834 hasConcept C86803240 @default.
- W3089732834 hasConcept C95444343 @default.
- W3089732834 hasConcept C99454951 @default.
- W3089732834 hasConceptScore W3089732834C126322002 @default.
- W3089732834 hasConceptScore W3089732834C16685009 @default.
- W3089732834 hasConceptScore W3089732834C196843134 @default.
- W3089732834 hasConceptScore W3089732834C24998067 @default.
- W3089732834 hasConceptScore W3089732834C2776690073 @default.
- W3089732834 hasConceptScore W3089732834C2777904497 @default.
- W3089732834 hasConceptScore W3089732834C2779234561 @default.
- W3089732834 hasConceptScore W3089732834C2908647359 @default.
- W3089732834 hasConceptScore W3089732834C512716672 @default.
- W3089732834 hasConceptScore W3089732834C518429986 @default.
- W3089732834 hasConceptScore W3089732834C54355233 @default.
- W3089732834 hasConceptScore W3089732834C71924100 @default.
- W3089732834 hasConceptScore W3089732834C86803240 @default.
- W3089732834 hasConceptScore W3089732834C95444343 @default.
- W3089732834 hasConceptScore W3089732834C99454951 @default.
- W3089732834 hasIssue "5" @default.
- W3089732834 hasLocation W30897328341 @default.
- W3089732834 hasOpenAccess W3089732834 @default.
- W3089732834 hasPrimaryLocation W30897328341 @default.
- W3089732834 hasRelatedWork W2075047034 @default.
- W3089732834 hasRelatedWork W2088473544 @default.
- W3089732834 hasRelatedWork W2155883905 @default.
- W3089732834 hasRelatedWork W2215714533 @default.
- W3089732834 hasRelatedWork W2361640104 @default.
- W3089732834 hasRelatedWork W2374597597 @default.
- W3089732834 hasRelatedWork W2756042162 @default.
- W3089732834 hasRelatedWork W3207063697 @default.
- W3089732834 hasRelatedWork W4226161892 @default.
- W3089732834 hasRelatedWork W993492462 @default.
- W3089732834 hasVolume "114" @default.
- W3089732834 isParatext "false" @default.
- W3089732834 isRetracted "false" @default.
- W3089732834 magId "3089732834" @default.
- W3089732834 workType "article" @default.