Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089752722> ?p ?o ?g. }
- W3089752722 endingPage "3591" @default.
- W3089752722 startingPage "3579" @default.
- W3089752722 abstract "This work proposes a novel multivariate-multiscale approach for computing the spectral and temporal entropies from the multichannel electroencephalogram (EEG) signal. This facilitates the recognition of three human emotions: positive, neutral, and negative. The proposed approach is based on the application of the Fourier-Bessel series expansion based empirical wavelet transform (FBSE-EWT). We have extended the existing FBSE-EWT method for multichannel signals and derived FBSE-EWT based multivariate Hilbert marginal spectrum (MHMS) for computing spectral Shannon and K-nearest neighbor (K-NN) entropies. The multivariate FBSE-EWT decomposes the multichannel EEG signals into narrow band subband signals. The multiscaling operation adapted in the spectral domain is based on the selection of successive joint instantaneous amplitude and frequency functions of the subband signals. On the other hand, the time domain multiscale K-NN entropy is computed from the cumulatively added multidimensional subband signals. The extracted spectral and temporal entropy features are smoothed and fed to the sparse autoencoder based random forest (ARF) classifier architecture for emotion classification. The proposed approach is tested using multichannel EEG signals available in a public database (SJTU emotion EEG dataset (SEED)). The bivariate EEG signals from different channel pairs with distinct spatial locations over the scalp are considered as input to our proposed system. The obtained overall classification accuracy of 94.4% reveals that the proposed approach is useful in classifying human emotions. The method is also validated using DREAMER emotion EEG public database. The method outperforms the existing state-of-the-art methods evaluated in these databases." @default.
- W3089752722 created "2020-10-08" @default.
- W3089752722 creator A5003313501 @default.
- W3089752722 creator A5010942815 @default.
- W3089752722 creator A5030314469 @default.
- W3089752722 creator A5056654254 @default.
- W3089752722 date "2021-02-01" @default.
- W3089752722 modified "2023-10-10" @default.
- W3089752722 title "A Novel Multivariate-Multiscale Approach for Computing EEG Spectral and Temporal Complexity for Human Emotion Recognition" @default.
- W3089752722 cites W1550318927 @default.
- W3089752722 cites W1947251450 @default.
- W3089752722 cites W1970727126 @default.
- W3089752722 cites W2001097956 @default.
- W3089752722 cites W2007221293 @default.
- W3089752722 cites W2015544881 @default.
- W3089752722 cites W2019900743 @default.
- W3089752722 cites W2033991357 @default.
- W3089752722 cites W2051326201 @default.
- W3089752722 cites W2053153607 @default.
- W3089752722 cites W2064770205 @default.
- W3089752722 cites W2081672271 @default.
- W3089752722 cites W2091192187 @default.
- W3089752722 cites W2091752829 @default.
- W3089752722 cites W2092939357 @default.
- W3089752722 cites W2093266575 @default.
- W3089752722 cites W2094789510 @default.
- W3089752722 cites W2109678654 @default.
- W3089752722 cites W2121383959 @default.
- W3089752722 cites W2140667387 @default.
- W3089752722 cites W2164699598 @default.
- W3089752722 cites W2170505850 @default.
- W3089752722 cites W2248620004 @default.
- W3089752722 cites W2260395597 @default.
- W3089752722 cites W2280482073 @default.
- W3089752722 cites W2334458175 @default.
- W3089752722 cites W2344271072 @default.
- W3089752722 cites W2461649332 @default.
- W3089752722 cites W2467010667 @default.
- W3089752722 cites W2538391214 @default.
- W3089752722 cites W2554037086 @default.
- W3089752722 cites W2568407436 @default.
- W3089752722 cites W2587844010 @default.
- W3089752722 cites W2599124244 @default.
- W3089752722 cites W2606301878 @default.
- W3089752722 cites W2613375858 @default.
- W3089752722 cites W2625929003 @default.
- W3089752722 cites W2767634396 @default.
- W3089752722 cites W2783274584 @default.
- W3089752722 cites W2786768213 @default.
- W3089752722 cites W2790814155 @default.
- W3089752722 cites W2792295722 @default.
- W3089752722 cites W2901979615 @default.
- W3089752722 cites W2903462437 @default.
- W3089752722 cites W2911964244 @default.
- W3089752722 cites W2914231497 @default.
- W3089752722 cites W2945616044 @default.
- W3089752722 cites W2962905870 @default.
- W3089752722 cites W3001587372 @default.
- W3089752722 doi "https://doi.org/10.1109/jsen.2020.3027181" @default.
- W3089752722 hasPublicationYear "2021" @default.
- W3089752722 type Work @default.
- W3089752722 sameAs 3089752722 @default.
- W3089752722 citedByCount "61" @default.
- W3089752722 countsByYear W30897527222021 @default.
- W3089752722 countsByYear W30897527222022 @default.
- W3089752722 countsByYear W30897527222023 @default.
- W3089752722 crossrefType "journal-article" @default.
- W3089752722 hasAuthorship W3089752722A5003313501 @default.
- W3089752722 hasAuthorship W3089752722A5010942815 @default.
- W3089752722 hasAuthorship W3089752722A5030314469 @default.
- W3089752722 hasAuthorship W3089752722A5056654254 @default.
- W3089752722 hasConcept C101738243 @default.
- W3089752722 hasConcept C106301342 @default.
- W3089752722 hasConcept C118552586 @default.
- W3089752722 hasConcept C119857082 @default.
- W3089752722 hasConcept C121332964 @default.
- W3089752722 hasConcept C153180895 @default.
- W3089752722 hasConcept C154945302 @default.
- W3089752722 hasConcept C15744967 @default.
- W3089752722 hasConcept C161584116 @default.
- W3089752722 hasConcept C19118579 @default.
- W3089752722 hasConcept C28490314 @default.
- W3089752722 hasConcept C31972630 @default.
- W3089752722 hasConcept C41008148 @default.
- W3089752722 hasConcept C47432892 @default.
- W3089752722 hasConcept C50644808 @default.
- W3089752722 hasConcept C522805319 @default.
- W3089752722 hasConcept C62520636 @default.
- W3089752722 hasConceptScore W3089752722C101738243 @default.
- W3089752722 hasConceptScore W3089752722C106301342 @default.
- W3089752722 hasConceptScore W3089752722C118552586 @default.
- W3089752722 hasConceptScore W3089752722C119857082 @default.
- W3089752722 hasConceptScore W3089752722C121332964 @default.
- W3089752722 hasConceptScore W3089752722C153180895 @default.
- W3089752722 hasConceptScore W3089752722C154945302 @default.
- W3089752722 hasConceptScore W3089752722C15744967 @default.
- W3089752722 hasConceptScore W3089752722C161584116 @default.
- W3089752722 hasConceptScore W3089752722C19118579 @default.