Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089761724> ?p ?o ?g. }
- W3089761724 endingPage "15049" @default.
- W3089761724 startingPage "15036" @default.
- W3089761724 abstract "The luminescence spectra of triscarbonatouranyl complexes were determined by experimental and theoretical methods. Time-resolved laser-induced fluorescence spectroscopy was used to monitor spectra of uranyl and bicarbonate solutions at 0.1 mol kgw-1 ionic strength and pH ca. 8. The concentrations of Mg2+ and Ca2+ in the samples were chosen in order to vary the proportions of the alkaline earth ternary uranyl complexes MgUO2(CO3)32-, CaUO2(CO3)32-, and Ca2UO2(CO3)3. The luminescence spectrum of each complex was determined by decomposition in order to compare it with the simulated spectra of model structures NamMnUO2(CO3)3(4-m-2n)- (M = Mg, Ca; m, n = 0-2) obtained by quantum chemical methods. The density functional theory (DFT) and time-dependent (TD)-DFT methods were used with the PBE0 functional to optimize the structures in the ground and excited states, respectively, including relativistic effects at the spin-free level, and water solvent effects using a continuum polarizable conductor model. The changes in the structural parameters were quantified with respect to the nature and the amount of alkaline earth counterions to explain the luminescence spectra behavior. The first low-lying excited state was successfully computed, together with the vibrational harmonic frequencies. The DFT calculations confirmed that uranyl luminescence originates from electronic transitions from one of the four nonbonding 5f orbitals of uranium to an orbital that has a uranyl-σ (5f, 6d) character mixed with the 2p atomic orbitals of the carbonate oxygens. Additional single-point calculations using the more accurate TD-DFT/CAM-B3LYP allow one to determine the position of the luminescence hot band for each structure in the range 467-476 nm and compared fairly well with experimental reports at around 465 nm. The complete luminescence spectra were built from theoretical results with the corresponding assignment of the electronic transitions and vibronic modes involved, mainly the U-Oax stretching mode. The resulting calculated spectra showed a very good agreement with experimental band positions and band spacing attributed to MgUO2(CO3)32-, CaUO2(CO3)32-, and Ca2UO2(CO3)3. The evolution of luminescence intensities with the number of alkaline earth metal ions in the structure was also correctly reproduced." @default.
- W3089761724 created "2020-10-08" @default.
- W3089761724 creator A5007618804 @default.
- W3089761724 creator A5008071490 @default.
- W3089761724 creator A5031324373 @default.
- W3089761724 creator A5039007810 @default.
- W3089761724 creator A5049493254 @default.
- W3089761724 creator A5082657072 @default.
- W3089761724 date "2020-10-01" @default.
- W3089761724 modified "2023-10-13" @default.
- W3089761724 title "Influence of Alkaline Earth Metal Ions on Structures and Luminescent Properties of Na<sub><i>m</i></sub>M<sub><i>n</i></sub>UO<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub><sup>(4–<i>m</i>–2<i>n</i>)–</sup> (M = Mg, Ca; <i>m</i>, <i>n</i> = 0–2): Time-Resolved Fluorescence Spectroscopy and <i>Ab Initio</i> Studies" @default.
- W3089761724 cites W1512002888 @default.
- W3089761724 cites W1890925917 @default.
- W3089761724 cites W1892399006 @default.
- W3089761724 cites W1964663048 @default.
- W3089761724 cites W1968819628 @default.
- W3089761724 cites W1984213898 @default.
- W3089761724 cites W1988091937 @default.
- W3089761724 cites W1988535566 @default.
- W3089761724 cites W1992525338 @default.
- W3089761724 cites W1992854523 @default.
- W3089761724 cites W1993253584 @default.
- W3089761724 cites W1998716786 @default.
- W3089761724 cites W2000500972 @default.
- W3089761724 cites W2006268272 @default.
- W3089761724 cites W2008708918 @default.
- W3089761724 cites W2008835782 @default.
- W3089761724 cites W2009663024 @default.
- W3089761724 cites W2016800344 @default.
- W3089761724 cites W2021576642 @default.
- W3089761724 cites W2023989245 @default.
- W3089761724 cites W2025060950 @default.
- W3089761724 cites W2029859412 @default.
- W3089761724 cites W2031536407 @default.
- W3089761724 cites W2034935928 @default.
- W3089761724 cites W2037883956 @default.
- W3089761724 cites W2046243922 @default.
- W3089761724 cites W2046500819 @default.
- W3089761724 cites W2048109066 @default.
- W3089761724 cites W2048496758 @default.
- W3089761724 cites W2048951104 @default.
- W3089761724 cites W2049212439 @default.
- W3089761724 cites W2050321400 @default.
- W3089761724 cites W2050695746 @default.
- W3089761724 cites W2055563809 @default.
- W3089761724 cites W2058046238 @default.
- W3089761724 cites W2058267209 @default.
- W3089761724 cites W2060830993 @default.
- W3089761724 cites W2062852634 @default.
- W3089761724 cites W2063074896 @default.
- W3089761724 cites W2066601751 @default.
- W3089761724 cites W2067769676 @default.
- W3089761724 cites W2069945413 @default.
- W3089761724 cites W2070403368 @default.
- W3089761724 cites W2073328513 @default.
- W3089761724 cites W2079091945 @default.
- W3089761724 cites W2080866139 @default.
- W3089761724 cites W2082037815 @default.
- W3089761724 cites W2086288648 @default.
- W3089761724 cites W2086706716 @default.
- W3089761724 cites W2095374362 @default.
- W3089761724 cites W2098893299 @default.
- W3089761724 cites W2110101790 @default.
- W3089761724 cites W2112307645 @default.
- W3089761724 cites W2116373706 @default.
- W3089761724 cites W2126031058 @default.
- W3089761724 cites W2127231861 @default.
- W3089761724 cites W2130442826 @default.
- W3089761724 cites W2167166362 @default.
- W3089761724 cites W2167590372 @default.
- W3089761724 cites W2273981230 @default.
- W3089761724 cites W2314564698 @default.
- W3089761724 cites W2318714981 @default.
- W3089761724 cites W2334580482 @default.
- W3089761724 cites W2480995460 @default.
- W3089761724 cites W2487754872 @default.
- W3089761724 cites W2491458126 @default.
- W3089761724 cites W2522940733 @default.
- W3089761724 cites W2555701374 @default.
- W3089761724 cites W2570488223 @default.
- W3089761724 cites W2741510292 @default.
- W3089761724 cites W2757948527 @default.
- W3089761724 cites W2790724896 @default.
- W3089761724 cites W2940029950 @default.
- W3089761724 cites W2972017951 @default.
- W3089761724 cites W2983909020 @default.
- W3089761724 cites W2994294902 @default.
- W3089761724 cites W3015958843 @default.
- W3089761724 cites W4239227123 @default.
- W3089761724 cites W65804857 @default.
- W3089761724 doi "https://doi.org/10.1021/acs.inorgchem.0c01986" @default.
- W3089761724 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33000939" @default.
- W3089761724 hasPublicationYear "2020" @default.
- W3089761724 type Work @default.
- W3089761724 sameAs 3089761724 @default.
- W3089761724 citedByCount "12" @default.
- W3089761724 countsByYear W30897617242020 @default.
- W3089761724 countsByYear W30897617242021 @default.