Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089763054> ?p ?o ?g. }
- W3089763054 endingPage "106728" @default.
- W3089763054 startingPage "106728" @default.
- W3089763054 abstract "Image manipulation plays important role in fake news spreading and it may cause ethical, economic, or political problems for people and sometimes for countries. Image integrity verification becomes a very important research issue due to increasing the forged images on the Internet and social media. The objective of this paper is presenting an accurate approach for digital image forgery detection has enough capability to sense any small image tampering and robustness against image manipulation attacks. The first step in the proposed approach is converting the RGB image into YCbCr space, then, the Hilbert–Huang Transform (HHT) features extracted from the chrominance-red component Cr, then, three different classifiers; Support Vector Machines (SVM), K-Nearest Neighbors (KNN), and Artificial Neuron Networks (ANN) have been tested and compared for image classification into authentic or forged. The results are verified using Structural-Similarity (SSIM) to calculate the forgery detection accuracy. The proposed approach has been tested with seven different manipulation images datasets; CASIA-V1, CASIA-V2, MICC-F2000, MICC-F600, MICC-F220, CoMoFoD and additional dataset collected from different Internet websites and social media. Furthermore, the proposed approach has been tested against post-processing attacks such as; image compression, adding Gaussian noises or adjusting the contrast of the image. The results show that, SVM classifier has achieved the highest accuracy compared to ANN and KNN classifiers. The proposed approach has been compared with other published approaches, and the comparison proved its superiority over the previously published approaches." @default.
- W3089763054 created "2020-10-08" @default.
- W3089763054 creator A5029421514 @default.
- W3089763054 creator A5055267514 @default.
- W3089763054 date "2020-12-01" @default.
- W3089763054 modified "2023-09-23" @default.
- W3089763054 title "An efficient approach for forgery detection in digital images using Hilbert–Huang transform" @default.
- W3089763054 cites W1971111339 @default.
- W3089763054 cites W1987535593 @default.
- W3089763054 cites W1997631810 @default.
- W3089763054 cites W2023192891 @default.
- W3089763054 cites W2052950171 @default.
- W3089763054 cites W2053169834 @default.
- W3089763054 cites W2067769652 @default.
- W3089763054 cites W2089818991 @default.
- W3089763054 cites W2112789121 @default.
- W3089763054 cites W2118613125 @default.
- W3089763054 cites W2133665775 @default.
- W3089763054 cites W2146928515 @default.
- W3089763054 cites W2162963619 @default.
- W3089763054 cites W2252353708 @default.
- W3089763054 cites W2343367146 @default.
- W3089763054 cites W2460892217 @default.
- W3089763054 cites W2468178205 @default.
- W3089763054 cites W2515227998 @default.
- W3089763054 cites W2527769013 @default.
- W3089763054 cites W2548506527 @default.
- W3089763054 cites W2554694615 @default.
- W3089763054 cites W2565770002 @default.
- W3089763054 cites W2604537026 @default.
- W3089763054 cites W2612190542 @default.
- W3089763054 cites W2616861335 @default.
- W3089763054 cites W2621311857 @default.
- W3089763054 cites W2750558369 @default.
- W3089763054 cites W2761193068 @default.
- W3089763054 cites W2763568916 @default.
- W3089763054 cites W2765084509 @default.
- W3089763054 cites W2771860015 @default.
- W3089763054 cites W2782798781 @default.
- W3089763054 cites W2801257769 @default.
- W3089763054 cites W2804558541 @default.
- W3089763054 cites W2809414801 @default.
- W3089763054 cites W2877263985 @default.
- W3089763054 cites W2888126606 @default.
- W3089763054 cites W2890734670 @default.
- W3089763054 cites W2900000561 @default.
- W3089763054 cites W2902214225 @default.
- W3089763054 cites W2911605501 @default.
- W3089763054 cites W2937067283 @default.
- W3089763054 cites W2945707806 @default.
- W3089763054 cites W2967817062 @default.
- W3089763054 cites W2968614587 @default.
- W3089763054 cites W2975393663 @default.
- W3089763054 cites W2978330132 @default.
- W3089763054 cites W2995374468 @default.
- W3089763054 cites W2997227084 @default.
- W3089763054 cites W3000668845 @default.
- W3089763054 cites W3013256850 @default.
- W3089763054 cites W3021904838 @default.
- W3089763054 cites W3033714013 @default.
- W3089763054 cites W3041314103 @default.
- W3089763054 cites W3045980433 @default.
- W3089763054 doi "https://doi.org/10.1016/j.asoc.2020.106728" @default.
- W3089763054 hasPublicationYear "2020" @default.
- W3089763054 type Work @default.
- W3089763054 sameAs 3089763054 @default.
- W3089763054 citedByCount "20" @default.
- W3089763054 countsByYear W30897630542021 @default.
- W3089763054 countsByYear W30897630542022 @default.
- W3089763054 countsByYear W30897630542023 @default.
- W3089763054 crossrefType "journal-article" @default.
- W3089763054 hasAuthorship W3089763054A5029421514 @default.
- W3089763054 hasAuthorship W3089763054A5055267514 @default.
- W3089763054 hasConcept C104317684 @default.
- W3089763054 hasConcept C115961682 @default.
- W3089763054 hasConcept C12267149 @default.
- W3089763054 hasConcept C153180895 @default.
- W3089763054 hasConcept C154945302 @default.
- W3089763054 hasConcept C163204269 @default.
- W3089763054 hasConcept C185592680 @default.
- W3089763054 hasConcept C31972630 @default.
- W3089763054 hasConcept C41008148 @default.
- W3089763054 hasConcept C42781572 @default.
- W3089763054 hasConcept C55493867 @default.
- W3089763054 hasConcept C63479239 @default.
- W3089763054 hasConcept C73313986 @default.
- W3089763054 hasConcept C9417928 @default.
- W3089763054 hasConceptScore W3089763054C104317684 @default.
- W3089763054 hasConceptScore W3089763054C115961682 @default.
- W3089763054 hasConceptScore W3089763054C12267149 @default.
- W3089763054 hasConceptScore W3089763054C153180895 @default.
- W3089763054 hasConceptScore W3089763054C154945302 @default.
- W3089763054 hasConceptScore W3089763054C163204269 @default.
- W3089763054 hasConceptScore W3089763054C185592680 @default.
- W3089763054 hasConceptScore W3089763054C31972630 @default.
- W3089763054 hasConceptScore W3089763054C41008148 @default.
- W3089763054 hasConceptScore W3089763054C42781572 @default.
- W3089763054 hasConceptScore W3089763054C55493867 @default.