Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089778819> ?p ?o ?g. }
- W3089778819 abstract "In this paper, we explore the possibility of achieving a more accurate depth estimation by fusing monocular images and Radar points using a deep neural network. We give a comprehensive study of the fusion between RGB images and Radar measurements from different aspects and proposed a working solution based on the observations. We find that the noise existing in Radar measurements is one of the main key reasons that prevents one from applying the existing fusion methods developed for LiDAR data and images to the new fusion problem between Radar data and images. The experiments are conducted on the nuScenes dataset, which is one of the first datasets which features Camera, Radar, and LiDAR recordings in diverse scenes and weather conditions. Extensive experiments demonstrate that our method outperforms existing fusion methods. We also provide detailed ablation studies to show the effectiveness of each component in our method." @default.
- W3089778819 created "2020-10-08" @default.
- W3089778819 creator A5001254143 @default.
- W3089778819 creator A5078838951 @default.
- W3089778819 creator A5091891363 @default.
- W3089778819 date "2020-09-30" @default.
- W3089778819 modified "2023-10-17" @default.
- W3089778819 title "Depth Estimation from Monocular Images and Sparse Radar Data" @default.
- W3089778819 cites W125693051 @default.
- W3089778819 cites W1776042733 @default.
- W3089778819 cites W1861492603 @default.
- W3089778819 cites W1903029394 @default.
- W3089778819 cites W1905829557 @default.
- W3089778819 cites W1992178727 @default.
- W3089778819 cites W2104974755 @default.
- W3089778819 cites W2108598243 @default.
- W3089778819 cites W2125310925 @default.
- W3089778819 cites W2132947399 @default.
- W3089778819 cites W2150066425 @default.
- W3089778819 cites W2194775991 @default.
- W3089778819 cites W2300779272 @default.
- W3089778819 cites W2340897893 @default.
- W3089778819 cites W2460937040 @default.
- W3089778819 cites W2520707372 @default.
- W3089778819 cites W2593414960 @default.
- W3089778819 cites W2609883120 @default.
- W3089778819 cites W2885093229 @default.
- W3089778819 cites W2886851716 @default.
- W3089778819 cites W2891649842 @default.
- W3089778819 cites W2894705404 @default.
- W3089778819 cites W2904255959 @default.
- W3089778819 cites W2914704920 @default.
- W3089778819 cites W2949634581 @default.
- W3089778819 cites W2951517617 @default.
- W3089778819 cites W2955863859 @default.
- W3089778819 cites W2962807621 @default.
- W3089778819 cites W2962835968 @default.
- W3089778819 cites W2963045776 @default.
- W3089778819 cites W2963150697 @default.
- W3089778819 cites W2963488291 @default.
- W3089778819 cites W2963591054 @default.
- W3089778819 cites W2963677766 @default.
- W3089778819 cites W2963867516 @default.
- W3089778819 cites W2967098543 @default.
- W3089778819 cites W2969053624 @default.
- W3089778819 cites W2969202876 @default.
- W3089778819 cites W2970971581 @default.
- W3089778819 cites W2989940015 @default.
- W3089778819 cites W2995042771 @default.
- W3089778819 cites W3000068051 @default.
- W3089778819 cites W3035574168 @default.
- W3089778819 cites W3049847664 @default.
- W3089778819 doi "https://doi.org/10.48550/arxiv.2010.00058" @default.
- W3089778819 hasPublicationYear "2020" @default.
- W3089778819 type Work @default.
- W3089778819 sameAs 3089778819 @default.
- W3089778819 citedByCount "0" @default.
- W3089778819 crossrefType "posted-content" @default.
- W3089778819 hasAuthorship W3089778819A5001254143 @default.
- W3089778819 hasAuthorship W3089778819A5078838951 @default.
- W3089778819 hasAuthorship W3089778819A5091891363 @default.
- W3089778819 hasBestOaLocation W30897788191 @default.
- W3089778819 hasConcept C10929652 @default.
- W3089778819 hasConcept C115961682 @default.
- W3089778819 hasConcept C138885662 @default.
- W3089778819 hasConcept C154945302 @default.
- W3089778819 hasConcept C158525013 @default.
- W3089778819 hasConcept C205649164 @default.
- W3089778819 hasConcept C26517878 @default.
- W3089778819 hasConcept C31972630 @default.
- W3089778819 hasConcept C33954974 @default.
- W3089778819 hasConcept C38652104 @default.
- W3089778819 hasConcept C41008148 @default.
- W3089778819 hasConcept C41895202 @default.
- W3089778819 hasConcept C51399673 @default.
- W3089778819 hasConcept C554190296 @default.
- W3089778819 hasConcept C62649853 @default.
- W3089778819 hasConcept C65909025 @default.
- W3089778819 hasConcept C76155785 @default.
- W3089778819 hasConcept C99498987 @default.
- W3089778819 hasConceptScore W3089778819C10929652 @default.
- W3089778819 hasConceptScore W3089778819C115961682 @default.
- W3089778819 hasConceptScore W3089778819C138885662 @default.
- W3089778819 hasConceptScore W3089778819C154945302 @default.
- W3089778819 hasConceptScore W3089778819C158525013 @default.
- W3089778819 hasConceptScore W3089778819C205649164 @default.
- W3089778819 hasConceptScore W3089778819C26517878 @default.
- W3089778819 hasConceptScore W3089778819C31972630 @default.
- W3089778819 hasConceptScore W3089778819C33954974 @default.
- W3089778819 hasConceptScore W3089778819C38652104 @default.
- W3089778819 hasConceptScore W3089778819C41008148 @default.
- W3089778819 hasConceptScore W3089778819C41895202 @default.
- W3089778819 hasConceptScore W3089778819C51399673 @default.
- W3089778819 hasConceptScore W3089778819C554190296 @default.
- W3089778819 hasConceptScore W3089778819C62649853 @default.
- W3089778819 hasConceptScore W3089778819C65909025 @default.
- W3089778819 hasConceptScore W3089778819C76155785 @default.
- W3089778819 hasConceptScore W3089778819C99498987 @default.
- W3089778819 hasLocation W30897788191 @default.
- W3089778819 hasLocation W30897788192 @default.