Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089779975> ?p ?o ?g. }
- W3089779975 endingPage "1809" @default.
- W3089779975 startingPage "1796" @default.
- W3089779975 abstract "As a promising neuromorphic framework, the optical neural network (ONN) demonstrates ultrahigh inference speed with low energy consumption. However, the previous ONN architectures have high area overhead which limits their practicality. In this article, we propose an area-efficient ONN architecture based on structured neural networks, leveraging optical fast Fourier transform for efficient computation. A two-phase software training flow with structured pruning is proposed to further reduce the optical component utilization. Experimental results demonstrate that the proposed architecture can achieve 2.2- 3.7× area cost improvement compared with the previous singular value decomposition-based architecture with comparable inference accuracy. A novel optical microdisk-based convolutional neural network architecture with joint learnability is proposed as an extension to move beyond Fourier transform and multilayer perception, enabling hardware-aware ONN design space exploration with lower area cost, higher power efficiency, and better noise-robustness." @default.
- W3089779975 created "2020-10-08" @default.
- W3089779975 creator A5002117195 @default.
- W3089779975 creator A5011883763 @default.
- W3089779975 creator A5020057821 @default.
- W3089779975 creator A5026254092 @default.
- W3089779975 creator A5026362859 @default.
- W3089779975 creator A5038900138 @default.
- W3089779975 creator A5090386129 @default.
- W3089779975 date "2021-09-01" @default.
- W3089779975 modified "2023-10-16" @default.
- W3089779975 title "Toward Hardware-Efficient Optical Neural Networks: Beyond FFT Architecture via Joint Learnability" @default.
- W3089779975 cites W1677182931 @default.
- W3089779975 cites W179875071 @default.
- W3089779975 cites W1965702053 @default.
- W3089779975 cites W1987371344 @default.
- W3089779975 cites W2019241715 @default.
- W3089779975 cites W2051270432 @default.
- W3089779975 cites W2076476236 @default.
- W3089779975 cites W2079519839 @default.
- W3089779975 cites W2127587906 @default.
- W3089779975 cites W2146747949 @default.
- W3089779975 cites W2161973497 @default.
- W3089779975 cites W2183341477 @default.
- W3089779975 cites W2314470091 @default.
- W3089779975 cites W2550362495 @default.
- W3089779975 cites W2593769476 @default.
- W3089779975 cites W2739588406 @default.
- W3089779975 cites W2743001015 @default.
- W3089779975 cites W2752849906 @default.
- W3089779975 cites W2770947648 @default.
- W3089779975 cites W2792037963 @default.
- W3089779975 cites W2909619795 @default.
- W3089779975 cites W2918160169 @default.
- W3089779975 cites W2945546236 @default.
- W3089779975 cites W2952285760 @default.
- W3089779975 cites W2953467609 @default.
- W3089779975 cites W2954910491 @default.
- W3089779975 cites W2972442919 @default.
- W3089779975 cites W3012331494 @default.
- W3089779975 cites W3013837193 @default.
- W3089779975 cites W3023058991 @default.
- W3089779975 cites W3036249069 @default.
- W3089779975 cites W3036548498 @default.
- W3089779975 cites W3044729026 @default.
- W3089779975 cites W3085227549 @default.
- W3089779975 cites W3086233253 @default.
- W3089779975 cites W3086405781 @default.
- W3089779975 cites W3087262698 @default.
- W3089779975 cites W3092599113 @default.
- W3089779975 cites W3098290163 @default.
- W3089779975 cites W3103046660 @default.
- W3089779975 doi "https://doi.org/10.1109/tcad.2020.3027649" @default.
- W3089779975 hasPublicationYear "2021" @default.
- W3089779975 type Work @default.
- W3089779975 sameAs 3089779975 @default.
- W3089779975 citedByCount "10" @default.
- W3089779975 countsByYear W30897799752021 @default.
- W3089779975 countsByYear W30897799752022 @default.
- W3089779975 countsByYear W30897799752023 @default.
- W3089779975 crossrefType "journal-article" @default.
- W3089779975 hasAuthorship W3089779975A5002117195 @default.
- W3089779975 hasAuthorship W3089779975A5011883763 @default.
- W3089779975 hasAuthorship W3089779975A5020057821 @default.
- W3089779975 hasAuthorship W3089779975A5026254092 @default.
- W3089779975 hasAuthorship W3089779975A5026362859 @default.
- W3089779975 hasAuthorship W3089779975A5038900138 @default.
- W3089779975 hasAuthorship W3089779975A5090386129 @default.
- W3089779975 hasConcept C104317684 @default.
- W3089779975 hasConcept C113775141 @default.
- W3089779975 hasConcept C118524514 @default.
- W3089779975 hasConcept C127413603 @default.
- W3089779975 hasConcept C154945302 @default.
- W3089779975 hasConcept C185592680 @default.
- W3089779975 hasConcept C24326235 @default.
- W3089779975 hasConcept C41008148 @default.
- W3089779975 hasConcept C50644808 @default.
- W3089779975 hasConcept C55493867 @default.
- W3089779975 hasConcept C63479239 @default.
- W3089779975 hasConcept C81363708 @default.
- W3089779975 hasConceptScore W3089779975C104317684 @default.
- W3089779975 hasConceptScore W3089779975C113775141 @default.
- W3089779975 hasConceptScore W3089779975C118524514 @default.
- W3089779975 hasConceptScore W3089779975C127413603 @default.
- W3089779975 hasConceptScore W3089779975C154945302 @default.
- W3089779975 hasConceptScore W3089779975C185592680 @default.
- W3089779975 hasConceptScore W3089779975C24326235 @default.
- W3089779975 hasConceptScore W3089779975C41008148 @default.
- W3089779975 hasConceptScore W3089779975C50644808 @default.
- W3089779975 hasConceptScore W3089779975C55493867 @default.
- W3089779975 hasConceptScore W3089779975C63479239 @default.
- W3089779975 hasConceptScore W3089779975C81363708 @default.
- W3089779975 hasFunder F4320338279 @default.
- W3089779975 hasIssue "9" @default.
- W3089779975 hasLocation W30897799751 @default.
- W3089779975 hasOpenAccess W3089779975 @default.
- W3089779975 hasPrimaryLocation W30897799751 @default.
- W3089779975 hasRelatedWork W2157828724 @default.