Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089792287> ?p ?o ?g. }
- W3089792287 endingPage "373" @default.
- W3089792287 startingPage "362" @default.
- W3089792287 abstract "Affinity-based purification of adeno-associated virus (AAV) vectors has replaced density-based methods for vectors used in clinical settings. This method utilizes camelid single-domain antibodies recognizing AAV capsids. These include AVB Sepharose (AVB) and POROS CaptureSelect affinity ligand for AAV8 (CSAL8) and AAV9 (CSAL9). In this study, we utilized cryo-electron microscopy and 3D image reconstruction to map the binding sites of these affinity ligands on the capsids of several AAV serotypes, including AAV1, AAV2, AAV5, AAV8, and AAV9, representing the range of sequence and structure diversity among AAVs. The AAV-ligand complex structures showed that AVB and CSAL9 bound to the 5-fold capsid region, although in different orientations, and CSAL8 bound to the side of the 3-fold protrusion. The AAV contact residues required for ligand binding, and thus AAV purification, and the ability of the ligands to neutralize infection were analyzed. The data show that only a few residues within the epitopes served to block affinity ligand binding. Neutralization was observed for AAV1 and AAV5 with AVB, for AAV1 with CSAL8, and for AAV9 with CSAL9, associated with regions that overlap with epitopes for neutralizing monoclonal antibodies against these capsids. This information is critical and could be generally applicable in the development of novel AAV vectors amenable to affinity column purification. Affinity-based purification of adeno-associated virus (AAV) vectors has replaced density-based methods for vectors used in clinical settings. This method utilizes camelid single-domain antibodies recognizing AAV capsids. These include AVB Sepharose (AVB) and POROS CaptureSelect affinity ligand for AAV8 (CSAL8) and AAV9 (CSAL9). In this study, we utilized cryo-electron microscopy and 3D image reconstruction to map the binding sites of these affinity ligands on the capsids of several AAV serotypes, including AAV1, AAV2, AAV5, AAV8, and AAV9, representing the range of sequence and structure diversity among AAVs. The AAV-ligand complex structures showed that AVB and CSAL9 bound to the 5-fold capsid region, although in different orientations, and CSAL8 bound to the side of the 3-fold protrusion. The AAV contact residues required for ligand binding, and thus AAV purification, and the ability of the ligands to neutralize infection were analyzed. The data show that only a few residues within the epitopes served to block affinity ligand binding. Neutralization was observed for AAV1 and AAV5 with AVB, for AAV1 with CSAL8, and for AAV9 with CSAL9, associated with regions that overlap with epitopes for neutralizing monoclonal antibodies against these capsids. This information is critical and could be generally applicable in the development of novel AAV vectors amenable to affinity column purification." @default.
- W3089792287 created "2020-10-08" @default.
- W3089792287 creator A5017461125 @default.
- W3089792287 creator A5020758764 @default.
- W3089792287 creator A5032849827 @default.
- W3089792287 creator A5045975442 @default.
- W3089792287 creator A5050007342 @default.
- W3089792287 creator A5054521114 @default.
- W3089792287 creator A5054738613 @default.
- W3089792287 creator A5059610804 @default.
- W3089792287 creator A5065917336 @default.
- W3089792287 creator A5076977649 @default.
- W3089792287 date "2020-12-01" @default.
- W3089792287 modified "2023-10-15" @default.
- W3089792287 title "Characterization of AAV-Specific Affinity Ligands: Consequences for Vector Purification and Development Strategies" @default.
- W3089792287 cites W1507799217 @default.
- W3089792287 cites W1601268295 @default.
- W3089792287 cites W1928580513 @default.
- W3089792287 cites W1965786463 @default.
- W3089792287 cites W1969651080 @default.
- W3089792287 cites W1974638173 @default.
- W3089792287 cites W1982076968 @default.
- W3089792287 cites W2009285158 @default.
- W3089792287 cites W2012799865 @default.
- W3089792287 cites W2037639054 @default.
- W3089792287 cites W2046810924 @default.
- W3089792287 cites W2048008983 @default.
- W3089792287 cites W2051159468 @default.
- W3089792287 cites W2054723576 @default.
- W3089792287 cites W2055777720 @default.
- W3089792287 cites W2076449818 @default.
- W3089792287 cites W2079182646 @default.
- W3089792287 cites W2122304523 @default.
- W3089792287 cites W2131971443 @default.
- W3089792287 cites W2132629607 @default.
- W3089792287 cites W2144046235 @default.
- W3089792287 cites W2144081223 @default.
- W3089792287 cites W2149678280 @default.
- W3089792287 cites W2153140538 @default.
- W3089792287 cites W2154329712 @default.
- W3089792287 cites W2170490863 @default.
- W3089792287 cites W2177624052 @default.
- W3089792287 cites W2266837556 @default.
- W3089792287 cites W2294089577 @default.
- W3089792287 cites W2464528200 @default.
- W3089792287 cites W2482792122 @default.
- W3089792287 cites W2520782926 @default.
- W3089792287 cites W2593511418 @default.
- W3089792287 cites W2791354025 @default.
- W3089792287 cites W2794625893 @default.
- W3089792287 cites W2803869264 @default.
- W3089792287 cites W2892057566 @default.
- W3089792287 cites W2897486240 @default.
- W3089792287 cites W2911059523 @default.
- W3089792287 cites W2911892982 @default.
- W3089792287 cites W2939251998 @default.
- W3089792287 cites W2951109748 @default.
- W3089792287 cites W2969759941 @default.
- W3089792287 cites W2975867742 @default.
- W3089792287 cites W2995083313 @default.
- W3089792287 cites W2996414279 @default.
- W3089792287 cites W3004984820 @default.
- W3089792287 cites W3017097499 @default.
- W3089792287 cites W3042273632 @default.
- W3089792287 cites W4232023110 @default.
- W3089792287 cites W803672014 @default.
- W3089792287 doi "https://doi.org/10.1016/j.omtm.2020.10.001" @default.
- W3089792287 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7591348" @default.
- W3089792287 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33145372" @default.
- W3089792287 hasPublicationYear "2020" @default.
- W3089792287 type Work @default.
- W3089792287 sameAs 3089792287 @default.
- W3089792287 citedByCount "27" @default.
- W3089792287 countsByYear W30897922872021 @default.
- W3089792287 countsByYear W30897922872022 @default.
- W3089792287 countsByYear W30897922872023 @default.
- W3089792287 crossrefType "journal-article" @default.
- W3089792287 hasAuthorship W3089792287A5017461125 @default.
- W3089792287 hasAuthorship W3089792287A5020758764 @default.
- W3089792287 hasAuthorship W3089792287A5032849827 @default.
- W3089792287 hasAuthorship W3089792287A5045975442 @default.
- W3089792287 hasAuthorship W3089792287A5050007342 @default.
- W3089792287 hasAuthorship W3089792287A5054521114 @default.
- W3089792287 hasAuthorship W3089792287A5054738613 @default.
- W3089792287 hasAuthorship W3089792287A5059610804 @default.
- W3089792287 hasAuthorship W3089792287A5065917336 @default.
- W3089792287 hasAuthorship W3089792287A5076977649 @default.
- W3089792287 hasBestOaLocation W30897922871 @default.
- W3089792287 hasConcept C116569031 @default.
- W3089792287 hasConcept C153911025 @default.
- W3089792287 hasConcept C159047783 @default.
- W3089792287 hasConcept C159654299 @default.
- W3089792287 hasConcept C170493617 @default.
- W3089792287 hasConcept C179247698 @default.
- W3089792287 hasConcept C181199279 @default.
- W3089792287 hasConcept C185592680 @default.
- W3089792287 hasConcept C195616568 @default.
- W3089792287 hasConcept C202878990 @default.