Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089792732> ?p ?o ?g. }
- W3089792732 endingPage "108690" @default.
- W3089792732 startingPage "108690" @default.
- W3089792732 abstract "• Transient flow analysis of helical bypass conduits with planar and nonplanar curved flow paths. Helical geometries to induce swirling and spiral flow in prosthetic grafts have been hypothesized as a possible way to improve the clinical outcomes in patients undergoing coronary artery bypass grafting. In this paper, the transient flow behavior in helical bypass conduits with two different curved flow paths (planar and nonplanar) was investigated. Numerical methods were used to examine the flow physics downstream of four idealized bypass conduits attached to an aorta. The flow field in the bypass conduits was examined based on a non-Newtonian blood-analog fluid with relevant physiological waveforms characterized by a Womersley number α of 2.13 and a mean Reynolds number Re mean of 107. The effects of nonplanar curvature and helicity were studied independently based on four idealized grafts. For all models, the axial flow downstream of the grafts resembles the oscillatory flow in straight tubes with a low α . The local secondary flow structures correspond closely to the strength of the swirling flow induced by the helical geometry. The helical conduit with a planar curved flow path in general consists of a pair of asymmetric vortices downstream. The introduction of a nonplanar curved flow path significantly increases the degree of asymmetry and leads to the transition from a double-vortex structure to a single swirling vortex flow. It is demonstrated that the swirling flow induced by the planar curvature promotes greater in-plane mixing downstream of the graft than the nonplanar curvature. However, the analysis of hemodynamic parameters reveals the effectiveness of a nonplanar curved flow path in the helical conduit in significantly elevating the overall mean wall shear stress. These findings demonstrate the possibility of using helical geometries and nonplanar curved flow paths in the design of external stents to independently control the mixing behavior and hemodynamic environment in coronary bypass conduits." @default.
- W3089792732 created "2020-10-08" @default.
- W3089792732 creator A5042614167 @default.
- W3089792732 creator A5083901509 @default.
- W3089792732 creator A5089163905 @default.
- W3089792732 date "2020-12-01" @default.
- W3089792732 modified "2023-09-27" @default.
- W3089792732 title "Effects of planar and nonplanar curved flow paths on the hemodynamics of helical conduits for coronary artery bypass grafting: A numerical study" @default.
- W3089792732 cites W1416383404 @default.
- W3089792732 cites W1924141242 @default.
- W3089792732 cites W1963578344 @default.
- W3089792732 cites W1964526269 @default.
- W3089792732 cites W1971959573 @default.
- W3089792732 cites W1972558067 @default.
- W3089792732 cites W1977794018 @default.
- W3089792732 cites W1979176272 @default.
- W3089792732 cites W1981393927 @default.
- W3089792732 cites W1982171476 @default.
- W3089792732 cites W1984336760 @default.
- W3089792732 cites W1989341411 @default.
- W3089792732 cites W1994102948 @default.
- W3089792732 cites W1997301048 @default.
- W3089792732 cites W2001480669 @default.
- W3089792732 cites W2002937159 @default.
- W3089792732 cites W2019145212 @default.
- W3089792732 cites W2023851480 @default.
- W3089792732 cites W2025463590 @default.
- W3089792732 cites W2039026552 @default.
- W3089792732 cites W2050861998 @default.
- W3089792732 cites W2054108405 @default.
- W3089792732 cites W2058862675 @default.
- W3089792732 cites W2062048698 @default.
- W3089792732 cites W2062798097 @default.
- W3089792732 cites W2074240664 @default.
- W3089792732 cites W2088715315 @default.
- W3089792732 cites W2090521580 @default.
- W3089792732 cites W2092172028 @default.
- W3089792732 cites W2105578714 @default.
- W3089792732 cites W2109284659 @default.
- W3089792732 cites W2113357422 @default.
- W3089792732 cites W2117855019 @default.
- W3089792732 cites W2123970476 @default.
- W3089792732 cites W2128880476 @default.
- W3089792732 cites W2133171144 @default.
- W3089792732 cites W2133246254 @default.
- W3089792732 cites W2140559313 @default.
- W3089792732 cites W2142973585 @default.
- W3089792732 cites W2144901573 @default.
- W3089792732 cites W2150865954 @default.
- W3089792732 cites W2152590007 @default.
- W3089792732 cites W2155753475 @default.
- W3089792732 cites W2159714655 @default.
- W3089792732 cites W2188854280 @default.
- W3089792732 cites W2212383742 @default.
- W3089792732 cites W2320270962 @default.
- W3089792732 cites W2396077428 @default.
- W3089792732 cites W2404692426 @default.
- W3089792732 cites W2522425747 @default.
- W3089792732 cites W2551273038 @default.
- W3089792732 cites W2566729639 @default.
- W3089792732 cites W2592923626 @default.
- W3089792732 cites W2609290615 @default.
- W3089792732 cites W2731619825 @default.
- W3089792732 cites W2747879619 @default.
- W3089792732 cites W2895850775 @default.
- W3089792732 cites W2900493595 @default.
- W3089792732 cites W2923117075 @default.
- W3089792732 cites W2998495198 @default.
- W3089792732 cites W338985173 @default.
- W3089792732 doi "https://doi.org/10.1016/j.ijheatfluidflow.2020.108690" @default.
- W3089792732 hasPublicationYear "2020" @default.
- W3089792732 type Work @default.
- W3089792732 sameAs 3089792732 @default.
- W3089792732 citedByCount "2" @default.
- W3089792732 countsByYear W30897927322021 @default.
- W3089792732 countsByYear W30897927322022 @default.
- W3089792732 crossrefType "journal-article" @default.
- W3089792732 hasAuthorship W3089792732A5042614167 @default.
- W3089792732 hasAuthorship W3089792732A5083901509 @default.
- W3089792732 hasAuthorship W3089792732A5089163905 @default.
- W3089792732 hasConcept C121332964 @default.
- W3089792732 hasConcept C127413603 @default.
- W3089792732 hasConcept C140820882 @default.
- W3089792732 hasConcept C182748727 @default.
- W3089792732 hasConcept C192562407 @default.
- W3089792732 hasConcept C195065555 @default.
- W3089792732 hasConcept C196558001 @default.
- W3089792732 hasConcept C204561356 @default.
- W3089792732 hasConcept C2524010 @default.
- W3089792732 hasConcept C2778384633 @default.
- W3089792732 hasConcept C33923547 @default.
- W3089792732 hasConcept C38349280 @default.
- W3089792732 hasConcept C57879066 @default.
- W3089792732 hasConcept C78519656 @default.
- W3089792732 hasConcept C89836073 @default.
- W3089792732 hasConceptScore W3089792732C121332964 @default.
- W3089792732 hasConceptScore W3089792732C127413603 @default.
- W3089792732 hasConceptScore W3089792732C140820882 @default.