Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089891425> ?p ?o ?g. }
- W3089891425 endingPage "2825" @default.
- W3089891425 startingPage "2818" @default.
- W3089891425 abstract "In the past few years, deep learning has been successfully applied to various omics data. However, the applications of deep learning in metabolomics are still relatively low compared to others omics. Currently, data pre-processing using convolutional neural network architecture appears to benefit the most from deep learning. Compound/structure identification and quantification using artificial neural network/deep learning performed relatively better than traditional machine learning techniques, whereas only marginally better results are observed in biological interpretations. Before deep learning can be effectively applied to metabolomics, several challenges should be addressed, including metabolome-specific deep learning architectures, dimensionality problems, and model evaluation regimes." @default.
- W3089891425 created "2020-10-08" @default.
- W3089891425 creator A5028916691 @default.
- W3089891425 creator A5033110455 @default.
- W3089891425 creator A5049415271 @default.
- W3089891425 creator A5059991041 @default.
- W3089891425 creator A5072417435 @default.
- W3089891425 creator A5082660216 @default.
- W3089891425 date "2020-01-01" @default.
- W3089891425 modified "2023-10-10" @default.
- W3089891425 title "Deep metabolome: Applications of deep learning in metabolomics" @default.
- W3089891425 cites W1019830208 @default.
- W3089891425 cites W1964010911 @default.
- W3089891425 cites W1964121443 @default.
- W3089891425 cites W1974777883 @default.
- W3089891425 cites W1988037271 @default.
- W3089891425 cites W1989299822 @default.
- W3089891425 cites W2002016471 @default.
- W3089891425 cites W2008420299 @default.
- W3089891425 cites W2026995805 @default.
- W3089891425 cites W2028070629 @default.
- W3089891425 cites W2028421938 @default.
- W3089891425 cites W2030658051 @default.
- W3089891425 cites W2031167046 @default.
- W3089891425 cites W2036740013 @default.
- W3089891425 cites W2037457708 @default.
- W3089891425 cites W2059327215 @default.
- W3089891425 cites W2063046703 @default.
- W3089891425 cites W2075109094 @default.
- W3089891425 cites W2084341220 @default.
- W3089891425 cites W2088944177 @default.
- W3089891425 cites W2100828578 @default.
- W3089891425 cites W2106770586 @default.
- W3089891425 cites W2108452336 @default.
- W3089891425 cites W2141007997 @default.
- W3089891425 cites W2143684265 @default.
- W3089891425 cites W2198606573 @default.
- W3089891425 cites W2261527505 @default.
- W3089891425 cites W2274788302 @default.
- W3089891425 cites W2295182096 @default.
- W3089891425 cites W2336169222 @default.
- W3089891425 cites W2345512687 @default.
- W3089891425 cites W2462785116 @default.
- W3089891425 cites W2536128108 @default.
- W3089891425 cites W2567080747 @default.
- W3089891425 cites W2610104735 @default.
- W3089891425 cites W2614180041 @default.
- W3089891425 cites W2735559031 @default.
- W3089891425 cites W2740955623 @default.
- W3089891425 cites W2767582147 @default.
- W3089891425 cites W2767683865 @default.
- W3089891425 cites W2786394271 @default.
- W3089891425 cites W2792165586 @default.
- W3089891425 cites W2793572854 @default.
- W3089891425 cites W2802909948 @default.
- W3089891425 cites W2887285382 @default.
- W3089891425 cites W2888484772 @default.
- W3089891425 cites W2902734986 @default.
- W3089891425 cites W2911087020 @default.
- W3089891425 cites W2914001277 @default.
- W3089891425 cites W2921144944 @default.
- W3089891425 cites W2921388451 @default.
- W3089891425 cites W2925495008 @default.
- W3089891425 cites W2926586252 @default.
- W3089891425 cites W2935703330 @default.
- W3089891425 cites W2938756926 @default.
- W3089891425 cites W2938826237 @default.
- W3089891425 cites W2942313777 @default.
- W3089891425 cites W2946791964 @default.
- W3089891425 cites W2951934944 @default.
- W3089891425 cites W2955080078 @default.
- W3089891425 cites W2956092424 @default.
- W3089891425 cites W2958239426 @default.
- W3089891425 cites W2959135669 @default.
- W3089891425 cites W2964962196 @default.
- W3089891425 cites W2969887043 @default.
- W3089891425 cites W2970279914 @default.
- W3089891425 cites W2971666515 @default.
- W3089891425 cites W2972243934 @default.
- W3089891425 cites W2980773467 @default.
- W3089891425 cites W2981679558 @default.
- W3089891425 cites W2982596783 @default.
- W3089891425 cites W2988932415 @default.
- W3089891425 cites W2994716258 @default.
- W3089891425 cites W2998974499 @default.
- W3089891425 cites W3000594279 @default.
- W3089891425 cites W3004306282 @default.
- W3089891425 cites W3010662401 @default.
- W3089891425 cites W3024078223 @default.
- W3089891425 cites W4231109964 @default.
- W3089891425 cites W4231543252 @default.
- W3089891425 cites W4242290395 @default.
- W3089891425 doi "https://doi.org/10.1016/j.csbj.2020.09.033" @default.
- W3089891425 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7575644" @default.
- W3089891425 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33133423" @default.
- W3089891425 hasPublicationYear "2020" @default.
- W3089891425 type Work @default.
- W3089891425 sameAs 3089891425 @default.