Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090202509> ?p ?o ?g. }
- W3090202509 endingPage "3162" @default.
- W3090202509 startingPage "3162" @default.
- W3090202509 abstract "To obtain the high-resolution multitemporal precipitation using spatial downscaling technique on a precipitation dataset may provide a better representation of the spatial variability of precipitation to be used for different purposes. In this research, a new downscaling methodology such as the global precipitation mission (GPM)-based multitemporal weighted precipitation analysis (GMWPA) at 0.05° resolution is developed and applied in the humid region of Mainland China by employing the GPM dataset at 0.1° and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 30 m DEM-based geospatial predictors, i.e., elevation, longitude, and latitude in empirical distribution-based framework (EDBF) algorithm. The proposed methodology is a two-stepped process in which a scale-dependent regression analysis between each individual precipitation variable and the EDBF-based weighted precipitation with geospatial predictor(s), and to downscale the predicted multitemporal weighted precipitation at a refined scale is developed for the downscaling of GMWPA. While comparing results, it shows that the weighted precipitation outperformed all precipitation variables in terms of the coefficient of determination (R2) value, whereas they outperformed the annual precipitation variables and underperformed as compared to the seasonal and the monthly variables in terms of the calculated root mean square error (RMSE) value. Based on the achieved results, the weighted precipitation at the low-resolution (e.g., at 0.75° resolution) along-with the original resolution (e.g., at 0.1° resolution) is employed in the downscaling process to predict the average multitemporal precipitation, the annual total precipitation for the year 2001 and 2004, and the average annual precipitation (2001–2015) at 0.05° resolution, respectively. The downscaling approach resulting through proposed methodology captured the spatial patterns with greater accuracy at higher spatial resolution. This work showed that it is feasible to increase the spatial resolution of a precipitation variable(s) with greater accuracy on an annual basis or as an average from the multitemporal precipitation dataset using a geospatial predictor as the proxy of precipitation through the weighted precipitation in EDBF environment." @default.
- W3090202509 created "2020-10-08" @default.
- W3090202509 creator A5015661510 @default.
- W3090202509 creator A5016701351 @default.
- W3090202509 creator A5025329106 @default.
- W3090202509 creator A5042608457 @default.
- W3090202509 creator A5045473603 @default.
- W3090202509 creator A5062225206 @default.
- W3090202509 creator A5079948413 @default.
- W3090202509 creator A5080077644 @default.
- W3090202509 creator A5081758513 @default.
- W3090202509 creator A5082806106 @default.
- W3090202509 date "2020-09-26" @default.
- W3090202509 modified "2023-10-16" @default.
- W3090202509 title "GPM-Based Multitemporal Weighted Precipitation Analysis Using GPM_IMERGDF Product and ASTER DEM in EDBF Algorithm" @default.
- W3090202509 cites W1129783503 @default.
- W3090202509 cites W1564372824 @default.
- W3090202509 cites W1588650177 @default.
- W3090202509 cites W1978018057 @default.
- W3090202509 cites W1980398615 @default.
- W3090202509 cites W1983103686 @default.
- W3090202509 cites W1983745221 @default.
- W3090202509 cites W1987688587 @default.
- W3090202509 cites W1990330790 @default.
- W3090202509 cites W1990364733 @default.
- W3090202509 cites W1995622703 @default.
- W3090202509 cites W2007051388 @default.
- W3090202509 cites W2009907489 @default.
- W3090202509 cites W2013537840 @default.
- W3090202509 cites W2016295636 @default.
- W3090202509 cites W2022349500 @default.
- W3090202509 cites W2026865765 @default.
- W3090202509 cites W2027901189 @default.
- W3090202509 cites W2030716213 @default.
- W3090202509 cites W2031264828 @default.
- W3090202509 cites W2048069199 @default.
- W3090202509 cites W2049899966 @default.
- W3090202509 cites W2061436185 @default.
- W3090202509 cites W2072183993 @default.
- W3090202509 cites W2072844554 @default.
- W3090202509 cites W2073298425 @default.
- W3090202509 cites W2075171190 @default.
- W3090202509 cites W2075258897 @default.
- W3090202509 cites W2089149595 @default.
- W3090202509 cites W2093654206 @default.
- W3090202509 cites W2093675520 @default.
- W3090202509 cites W2094653192 @default.
- W3090202509 cites W2096533595 @default.
- W3090202509 cites W2140994193 @default.
- W3090202509 cites W2141714266 @default.
- W3090202509 cites W2144051257 @default.
- W3090202509 cites W2145088822 @default.
- W3090202509 cites W2148265007 @default.
- W3090202509 cites W2151033096 @default.
- W3090202509 cites W2172877736 @default.
- W3090202509 cites W2201111821 @default.
- W3090202509 cites W2261645655 @default.
- W3090202509 cites W2397311736 @default.
- W3090202509 cites W2403862144 @default.
- W3090202509 cites W2463437968 @default.
- W3090202509 cites W2563560677 @default.
- W3090202509 cites W2736539021 @default.
- W3090202509 cites W2753753116 @default.
- W3090202509 cites W2759725738 @default.
- W3090202509 cites W2788313662 @default.
- W3090202509 cites W2805797359 @default.
- W3090202509 cites W3035174126 @default.
- W3090202509 doi "https://doi.org/10.3390/rs12193162" @default.
- W3090202509 hasPublicationYear "2020" @default.
- W3090202509 type Work @default.
- W3090202509 sameAs 3090202509 @default.
- W3090202509 citedByCount "8" @default.
- W3090202509 countsByYear W30902025092021 @default.
- W3090202509 countsByYear W30902025092022 @default.
- W3090202509 countsByYear W30902025092023 @default.
- W3090202509 crossrefType "journal-article" @default.
- W3090202509 hasAuthorship W3090202509A5015661510 @default.
- W3090202509 hasAuthorship W3090202509A5016701351 @default.
- W3090202509 hasAuthorship W3090202509A5025329106 @default.
- W3090202509 hasAuthorship W3090202509A5042608457 @default.
- W3090202509 hasAuthorship W3090202509A5045473603 @default.
- W3090202509 hasAuthorship W3090202509A5062225206 @default.
- W3090202509 hasAuthorship W3090202509A5079948413 @default.
- W3090202509 hasAuthorship W3090202509A5080077644 @default.
- W3090202509 hasAuthorship W3090202509A5081758513 @default.
- W3090202509 hasAuthorship W3090202509A5082806106 @default.
- W3090202509 hasBestOaLocation W30902025091 @default.
- W3090202509 hasConcept C107054158 @default.
- W3090202509 hasConcept C11413529 @default.
- W3090202509 hasConcept C127313418 @default.
- W3090202509 hasConcept C13772937 @default.
- W3090202509 hasConcept C153294291 @default.
- W3090202509 hasConcept C181843262 @default.
- W3090202509 hasConcept C205649164 @default.
- W3090202509 hasConcept C29278236 @default.
- W3090202509 hasConcept C33923547 @default.
- W3090202509 hasConcept C39432304 @default.
- W3090202509 hasConcept C41156917 @default.