Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090207777> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3090207777 endingPage "113421" @default.
- W3090207777 startingPage "113421" @default.
- W3090207777 abstract "This paper presents a new strategy to blend the outcome of physics-based numerical simulations with massive but poorly-labelled experimental databases such as in-situ data routinely recorded for monitoring purposes. The proposed approach relies on a set of adversarial learning techniques with a twofold purpose: (1) finding two reduced-dimensional non-linear representations of both synthetic and experimental data; (2) training a stochastic generator of fake experimental responses conditioned by the physics-based simulation results. This methodology is applied to earthquake ground motion prediction. Indeed, regional three-dimensional high-fidelity numerical models accounting for both extended sources and complex geology are still limited to a low-frequency range. Moreover, they are prone to significant uncertainties induced by a lack of data on small scale geological structures and rupture processes. Databases of broadband seismic signals recorded worldwide at seismological networks are used to retrieve some pieces of information on these small scale data to generate realistic broadband signals from synthetic ones. Outstanding performances in encoding seismic signals are demonstrated, together with efficient generation capabilities, provided that the physics-based results carry enough information to properly condition the stochastic generator. In addition, this paper shows that the proposed method, fed only with raw data from both databases and numerical models, outperforms other random signal generators based on pre-existing expertise such as prescribed spectra and more or less complex phenomenological models." @default.
- W3090207777 created "2020-10-08" @default.
- W3090207777 creator A5045360700 @default.
- W3090207777 creator A5067126002 @default.
- W3090207777 date "2020-12-01" @default.
- W3090207777 modified "2023-09-30" @default.
- W3090207777 title "Towards blending Physics-Based numerical simulations and seismic databases using Generative Adversarial Network" @default.
- W3090207777 cites W2004379372 @default.
- W3090207777 cites W2058570445 @default.
- W3090207777 cites W2100495367 @default.
- W3090207777 cites W2132466156 @default.
- W3090207777 cites W2289692395 @default.
- W3090207777 cites W2300941020 @default.
- W3090207777 cites W2414568040 @default.
- W3090207777 cites W2476704344 @default.
- W3090207777 cites W2801227410 @default.
- W3090207777 cites W2892353612 @default.
- W3090207777 cites W2895546528 @default.
- W3090207777 cites W2968260924 @default.
- W3090207777 cites W2980395728 @default.
- W3090207777 cites W2986894079 @default.
- W3090207777 cites W3026667335 @default.
- W3090207777 doi "https://doi.org/10.1016/j.cma.2020.113421" @default.
- W3090207777 hasPublicationYear "2020" @default.
- W3090207777 type Work @default.
- W3090207777 sameAs 3090207777 @default.
- W3090207777 citedByCount "14" @default.
- W3090207777 countsByYear W30902077772021 @default.
- W3090207777 countsByYear W30902077772022 @default.
- W3090207777 countsByYear W30902077772023 @default.
- W3090207777 crossrefType "journal-article" @default.
- W3090207777 hasAuthorship W3090207777A5045360700 @default.
- W3090207777 hasAuthorship W3090207777A5067126002 @default.
- W3090207777 hasConcept C113364801 @default.
- W3090207777 hasConcept C11413529 @default.
- W3090207777 hasConcept C121332964 @default.
- W3090207777 hasConcept C124101348 @default.
- W3090207777 hasConcept C127413603 @default.
- W3090207777 hasConcept C146978453 @default.
- W3090207777 hasConcept C160920958 @default.
- W3090207777 hasConcept C163258240 @default.
- W3090207777 hasConcept C204323151 @default.
- W3090207777 hasConcept C24890656 @default.
- W3090207777 hasConcept C2778755073 @default.
- W3090207777 hasConcept C2780992000 @default.
- W3090207777 hasConcept C41008148 @default.
- W3090207777 hasConcept C62520636 @default.
- W3090207777 hasConceptScore W3090207777C113364801 @default.
- W3090207777 hasConceptScore W3090207777C11413529 @default.
- W3090207777 hasConceptScore W3090207777C121332964 @default.
- W3090207777 hasConceptScore W3090207777C124101348 @default.
- W3090207777 hasConceptScore W3090207777C127413603 @default.
- W3090207777 hasConceptScore W3090207777C146978453 @default.
- W3090207777 hasConceptScore W3090207777C160920958 @default.
- W3090207777 hasConceptScore W3090207777C163258240 @default.
- W3090207777 hasConceptScore W3090207777C204323151 @default.
- W3090207777 hasConceptScore W3090207777C24890656 @default.
- W3090207777 hasConceptScore W3090207777C2778755073 @default.
- W3090207777 hasConceptScore W3090207777C2780992000 @default.
- W3090207777 hasConceptScore W3090207777C41008148 @default.
- W3090207777 hasConceptScore W3090207777C62520636 @default.
- W3090207777 hasFunder F4320320883 @default.
- W3090207777 hasLocation W30902077771 @default.
- W3090207777 hasLocation W30902077772 @default.
- W3090207777 hasLocation W30902077773 @default.
- W3090207777 hasOpenAccess W3090207777 @default.
- W3090207777 hasPrimaryLocation W30902077771 @default.
- W3090207777 hasRelatedWork W2056608523 @default.
- W3090207777 hasRelatedWork W2153913439 @default.
- W3090207777 hasRelatedWork W2347219288 @default.
- W3090207777 hasRelatedWork W2356629573 @default.
- W3090207777 hasRelatedWork W2366221835 @default.
- W3090207777 hasRelatedWork W2375354128 @default.
- W3090207777 hasRelatedWork W2386767533 @default.
- W3090207777 hasRelatedWork W2390459957 @default.
- W3090207777 hasRelatedWork W2746742710 @default.
- W3090207777 hasRelatedWork W3174671691 @default.
- W3090207777 hasVolume "372" @default.
- W3090207777 isParatext "false" @default.
- W3090207777 isRetracted "false" @default.
- W3090207777 magId "3090207777" @default.
- W3090207777 workType "article" @default.