Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090209317> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3090209317 abstract "Machine learning has become a new hot-topic in Materials Sciences. For instance, several approaches from unsupervised and supervised learning have been applied as surrogate models to study the properties of several classes of materials. Here, we investigate, from a graph-based clustering perspective, the Quantum QM9 dataset. This dataset is one of the most used datasets in this scenario. Our investigation is two-fold: 1) understand whether the QM9 samples are organized in clusters, and 2) if the clustering structure might provide us with some insights regarding anomalous molecules, or molecules that jeopardize the accuracy of supervised property prediction methods. Our results show that the QM9 is indeed structured into clusters. These clusters, for instance, might suggest better approaches for splitting the dataset when using cross-correlation approaches in supervised learning. However, regarding our second question, our finds indicate that the clustering structure, obtained via Simplified Molecular Input Line Entry System (SMILES) representation, cannot be used to filter anomalous samples in property prediction. Thus, further investigation regarding this limitation should be conducted in future research." @default.
- W3090209317 created "2020-10-08" @default.
- W3090209317 creator A5003723732 @default.
- W3090209317 creator A5033620138 @default.
- W3090209317 creator A5041084845 @default.
- W3090209317 creator A5077065362 @default.
- W3090209317 date "2020-01-01" @default.
- W3090209317 modified "2023-10-03" @default.
- W3090209317 title "A Graph-Based Clustering Analysis of the QM9 Dataset via SMILES Descriptors" @default.
- W3090209317 cites W1975147762 @default.
- W3090209317 cites W1980210065 @default.
- W3090209317 cites W2011430131 @default.
- W3090209317 cites W2071744657 @default.
- W3090209317 cites W2080635178 @default.
- W3090209317 cites W2093221728 @default.
- W3090209317 cites W2122646361 @default.
- W3090209317 cites W2129934604 @default.
- W3090209317 cites W2131681506 @default.
- W3090209317 cites W2345470764 @default.
- W3090209317 cites W2594183968 @default.
- W3090209317 cites W2639728117 @default.
- W3090209317 cites W2753962198 @default.
- W3090209317 cites W2787894218 @default.
- W3090209317 cites W2791355014 @default.
- W3090209317 cites W2907657781 @default.
- W3090209317 cites W2949095042 @default.
- W3090209317 cites W3106310231 @default.
- W3090209317 cites W4231254085 @default.
- W3090209317 doi "https://doi.org/10.1007/978-3-030-58799-4_31" @default.
- W3090209317 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7975397" @default.
- W3090209317 hasPublicationYear "2020" @default.
- W3090209317 type Work @default.
- W3090209317 sameAs 3090209317 @default.
- W3090209317 citedByCount "1" @default.
- W3090209317 countsByYear W30902093172021 @default.
- W3090209317 crossrefType "book-chapter" @default.
- W3090209317 hasAuthorship W3090209317A5003723732 @default.
- W3090209317 hasAuthorship W3090209317A5033620138 @default.
- W3090209317 hasAuthorship W3090209317A5041084845 @default.
- W3090209317 hasAuthorship W3090209317A5077065362 @default.
- W3090209317 hasConcept C119857082 @default.
- W3090209317 hasConcept C124101348 @default.
- W3090209317 hasConcept C12713177 @default.
- W3090209317 hasConcept C132525143 @default.
- W3090209317 hasConcept C153180895 @default.
- W3090209317 hasConcept C154945302 @default.
- W3090209317 hasConcept C17744445 @default.
- W3090209317 hasConcept C199539241 @default.
- W3090209317 hasConcept C2776359362 @default.
- W3090209317 hasConcept C41008148 @default.
- W3090209317 hasConcept C73555534 @default.
- W3090209317 hasConcept C8038995 @default.
- W3090209317 hasConcept C80444323 @default.
- W3090209317 hasConcept C94625758 @default.
- W3090209317 hasConceptScore W3090209317C119857082 @default.
- W3090209317 hasConceptScore W3090209317C124101348 @default.
- W3090209317 hasConceptScore W3090209317C12713177 @default.
- W3090209317 hasConceptScore W3090209317C132525143 @default.
- W3090209317 hasConceptScore W3090209317C153180895 @default.
- W3090209317 hasConceptScore W3090209317C154945302 @default.
- W3090209317 hasConceptScore W3090209317C17744445 @default.
- W3090209317 hasConceptScore W3090209317C199539241 @default.
- W3090209317 hasConceptScore W3090209317C2776359362 @default.
- W3090209317 hasConceptScore W3090209317C41008148 @default.
- W3090209317 hasConceptScore W3090209317C73555534 @default.
- W3090209317 hasConceptScore W3090209317C8038995 @default.
- W3090209317 hasConceptScore W3090209317C80444323 @default.
- W3090209317 hasConceptScore W3090209317C94625758 @default.
- W3090209317 hasLocation W30902093171 @default.
- W3090209317 hasOpenAccess W3090209317 @default.
- W3090209317 hasPrimaryLocation W30902093171 @default.
- W3090209317 hasRelatedWork W10015831 @default.
- W3090209317 hasRelatedWork W10697079 @default.
- W3090209317 hasRelatedWork W11219696 @default.
- W3090209317 hasRelatedWork W13366983 @default.
- W3090209317 hasRelatedWork W2390764 @default.
- W3090209317 hasRelatedWork W2533007 @default.
- W3090209317 hasRelatedWork W3140435 @default.
- W3090209317 hasRelatedWork W6581905 @default.
- W3090209317 hasRelatedWork W9321062 @default.
- W3090209317 hasRelatedWork W9770290 @default.
- W3090209317 isParatext "false" @default.
- W3090209317 isRetracted "false" @default.
- W3090209317 magId "3090209317" @default.
- W3090209317 workType "book-chapter" @default.