Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090216495> ?p ?o ?g. }
- W3090216495 endingPage "2992" @default.
- W3090216495 startingPage "2981" @default.
- W3090216495 abstract "Abstract. Satellite-based aerosol retrievals provide a timely view of atmospheric aerosol properties, having a crucial role in the subsequent estimation of air quality indicators, atmospherically corrected satellite data products, and climate applications. However, current aerosol data products based on satellite data often have relatively large biases compared to accurate ground-based measurements and distinct uncertainty levels associated with them. These biases and uncertainties are often caused by oversimplified assumptions and approximations used in the retrieval algorithms due to unknown surface reflectance or fixed aerosol models. Moreover, the retrieval algorithms do not usually take advantage of all the possible observational data collected by the satellite instruments and may, for example, leave some spectral bands unused. The improvement and the re-processing of the past and current operational satellite data retrieval algorithms would become tedious and computationally expensive. To overcome this burden, we have developed a model-enforced post-process correction approach to correct the existing operational satellite aerosol data products. Our approach combines the existing satellite aerosol retrievals and a post-processing step carried out with a machine-learning-based correction model for the approximation error in the retrieval. The developed approach allows for the utilization of auxiliary data sources, such as meteorological information, or additional observations such as spectral bands unused by the original retrieval algorithm. The post-process correction model can learn to correct for the biases and uncertainties in the original retrieval algorithms. As the correction is carried out as a post-processing step, it allows for computationally efficient re-processing of existing satellite aerosol datasets without fully re-processing the much larger original radiance data. We demonstrate with over-land aerosol optical depth (AOD) and Ångström exponent (AE) data from the Moderate Imaging Spectroradiometer (MODIS) of the Aqua satellite that our approach can significantly improve the accuracy of the satellite aerosol data products and reduce the associated uncertainties. For instance, in our evaluation, the number of AOD samples within the MODIS Dark Target expected error envelope increased from 63 % to 85 % when the post-process correction was applied. In addition to method description and accuracy results, we also give recommendations for validating machine-learning-based satellite data products." @default.
- W3090216495 created "2020-10-08" @default.
- W3090216495 creator A5001218466 @default.
- W3090216495 creator A5006724752 @default.
- W3090216495 creator A5007685597 @default.
- W3090216495 creator A5009260583 @default.
- W3090216495 creator A5014167624 @default.
- W3090216495 creator A5035195073 @default.
- W3090216495 creator A5045764902 @default.
- W3090216495 creator A5051527924 @default.
- W3090216495 creator A5076017298 @default.
- W3090216495 date "2021-04-22" @default.
- W3090216495 modified "2023-10-18" @default.
- W3090216495 title "Model-enforced post-process correction of satellite aerosol retrievals" @default.
- W3090216495 cites W2008771271 @default.
- W3090216495 cites W2025371965 @default.
- W3090216495 cites W2027721022 @default.
- W3090216495 cites W2050250373 @default.
- W3090216495 cites W2067726355 @default.
- W3090216495 cites W2074185313 @default.
- W3090216495 cites W2089433206 @default.
- W3090216495 cites W2097693355 @default.
- W3090216495 cites W2103977502 @default.
- W3090216495 cites W2119785460 @default.
- W3090216495 cites W2147867287 @default.
- W3090216495 cites W2148490902 @default.
- W3090216495 cites W2178533968 @default.
- W3090216495 cites W2607030186 @default.
- W3090216495 cites W2607693830 @default.
- W3090216495 cites W2620207452 @default.
- W3090216495 cites W2704099376 @default.
- W3090216495 cites W2789084207 @default.
- W3090216495 cites W2899773405 @default.
- W3090216495 cites W2911964244 @default.
- W3090216495 cites W2963231761 @default.
- W3090216495 cites W2965417193 @default.
- W3090216495 cites W3007969275 @default.
- W3090216495 doi "https://doi.org/10.5194/amt-14-2981-2021" @default.
- W3090216495 hasPublicationYear "2021" @default.
- W3090216495 type Work @default.
- W3090216495 sameAs 3090216495 @default.
- W3090216495 citedByCount "2" @default.
- W3090216495 countsByYear W30902164952022 @default.
- W3090216495 crossrefType "journal-article" @default.
- W3090216495 hasAuthorship W3090216495A5001218466 @default.
- W3090216495 hasAuthorship W3090216495A5006724752 @default.
- W3090216495 hasAuthorship W3090216495A5007685597 @default.
- W3090216495 hasAuthorship W3090216495A5009260583 @default.
- W3090216495 hasAuthorship W3090216495A5014167624 @default.
- W3090216495 hasAuthorship W3090216495A5035195073 @default.
- W3090216495 hasAuthorship W3090216495A5045764902 @default.
- W3090216495 hasAuthorship W3090216495A5051527924 @default.
- W3090216495 hasAuthorship W3090216495A5076017298 @default.
- W3090216495 hasBestOaLocation W30902164951 @default.
- W3090216495 hasConcept C111919701 @default.
- W3090216495 hasConcept C11413529 @default.
- W3090216495 hasConcept C127413603 @default.
- W3090216495 hasConcept C138827492 @default.
- W3090216495 hasConcept C146978453 @default.
- W3090216495 hasConcept C153294291 @default.
- W3090216495 hasConcept C19269812 @default.
- W3090216495 hasConcept C205649164 @default.
- W3090216495 hasConcept C2778329001 @default.
- W3090216495 hasConcept C2779345167 @default.
- W3090216495 hasConcept C39432304 @default.
- W3090216495 hasConcept C41008148 @default.
- W3090216495 hasConcept C62649853 @default.
- W3090216495 hasConcept C77088390 @default.
- W3090216495 hasConcept C98045186 @default.
- W3090216495 hasConceptScore W3090216495C111919701 @default.
- W3090216495 hasConceptScore W3090216495C11413529 @default.
- W3090216495 hasConceptScore W3090216495C127413603 @default.
- W3090216495 hasConceptScore W3090216495C138827492 @default.
- W3090216495 hasConceptScore W3090216495C146978453 @default.
- W3090216495 hasConceptScore W3090216495C153294291 @default.
- W3090216495 hasConceptScore W3090216495C19269812 @default.
- W3090216495 hasConceptScore W3090216495C205649164 @default.
- W3090216495 hasConceptScore W3090216495C2778329001 @default.
- W3090216495 hasConceptScore W3090216495C2779345167 @default.
- W3090216495 hasConceptScore W3090216495C39432304 @default.
- W3090216495 hasConceptScore W3090216495C41008148 @default.
- W3090216495 hasConceptScore W3090216495C62649853 @default.
- W3090216495 hasConceptScore W3090216495C77088390 @default.
- W3090216495 hasConceptScore W3090216495C98045186 @default.
- W3090216495 hasFunder F4320321108 @default.
- W3090216495 hasIssue "4" @default.
- W3090216495 hasLocation W30902164951 @default.
- W3090216495 hasLocation W30902164952 @default.
- W3090216495 hasOpenAccess W3090216495 @default.
- W3090216495 hasPrimaryLocation W30902164951 @default.
- W3090216495 hasRelatedWork W1481661428 @default.
- W3090216495 hasRelatedWork W1571348832 @default.
- W3090216495 hasRelatedWork W2039495309 @default.
- W3090216495 hasRelatedWork W2049539733 @default.
- W3090216495 hasRelatedWork W2128101618 @default.
- W3090216495 hasRelatedWork W2388623470 @default.
- W3090216495 hasRelatedWork W2987811099 @default.
- W3090216495 hasRelatedWork W3035130326 @default.