Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090219715> ?p ?o ?g. }
- W3090219715 endingPage "216" @default.
- W3090219715 startingPage "207" @default.
- W3090219715 abstract "Prediction of patients at risk for mortality can help triage patients and assist in resource allocation.Develop and evaluate a machine learning-based algorithm which accurately predicts mortality in COVID-19, pneumonia, and mechanically ventilated patients.Retrospective study of 53,001 total ICU patients, including 9166 patients with pneumonia and 25,895 mechanically ventilated patients, performed on the MIMIC dataset. An additional retrospective analysis was performed on a community hospital dataset containing 114 patients positive for SARS-COV-2 by PCR test. The outcome of interest was in-hospital patient mortality.When trained and tested on the MIMIC dataset, the XGBoost predictor obtained area under the receiver operating characteristic (AUROC) values of 0.82, 0.81, 0.77, and 0.75 for mortality prediction on mechanically ventilated patients at 12-, 24-, 48-, and 72- hour windows, respectively, and AUROCs of 0.87, 0.78, 0.77, and 0.734 for mortality prediction on pneumonia patients at 12-, 24-, 48-, and 72- hour windows, respectively. The predictor outperformed the qSOFA, MEWS and CURB-65 risk scores at all prediction windows. When tested on the community hospital dataset, the predictor obtained AUROCs of 0.91, 0.90, 0.86, and 0.87 for mortality prediction on COVID-19 patients at 12-, 24-, 48-, and 72- hour windows, respectively, outperforming the qSOFA, MEWS and CURB-65 risk scores at all prediction windows.This machine learning-based algorithm is a useful predictive tool for anticipating patient mortality at clinically useful timepoints, and is capable of accurate mortality prediction for mechanically ventilated patients as well as those diagnosed with pneumonia and COVID-19." @default.
- W3090219715 created "2020-10-08" @default.
- W3090219715 creator A5032268509 @default.
- W3090219715 creator A5045778233 @default.
- W3090219715 creator A5046232417 @default.
- W3090219715 creator A5046346208 @default.
- W3090219715 creator A5046974631 @default.
- W3090219715 creator A5052050239 @default.
- W3090219715 creator A5054119515 @default.
- W3090219715 creator A5069510468 @default.
- W3090219715 creator A5070304475 @default.
- W3090219715 creator A5083110866 @default.
- W3090219715 date "2020-11-01" @default.
- W3090219715 modified "2023-09-23" @default.
- W3090219715 title "Mortality prediction model for the triage of COVID-19, pneumonia, and mechanically ventilated ICU patients: A retrospective study" @default.
- W3090219715 cites W1948035048 @default.
- W3090219715 cites W1964176984 @default.
- W3090219715 cites W1974873560 @default.
- W3090219715 cites W1977215610 @default.
- W3090219715 cites W1992701648 @default.
- W3090219715 cites W2033925475 @default.
- W3090219715 cites W2075153525 @default.
- W3090219715 cites W2082257894 @default.
- W3090219715 cites W2106852592 @default.
- W3090219715 cites W2107932644 @default.
- W3090219715 cites W2123039957 @default.
- W3090219715 cites W2128349740 @default.
- W3090219715 cites W2150765167 @default.
- W3090219715 cites W2169167455 @default.
- W3090219715 cites W2200122354 @default.
- W3090219715 cites W2280404143 @default.
- W3090219715 cites W2325294495 @default.
- W3090219715 cites W2396289926 @default.
- W3090219715 cites W2396881363 @default.
- W3090219715 cites W2408866005 @default.
- W3090219715 cites W2439245797 @default.
- W3090219715 cites W2463614226 @default.
- W3090219715 cites W2470646526 @default.
- W3090219715 cites W2518269322 @default.
- W3090219715 cites W2523711812 @default.
- W3090219715 cites W2599930672 @default.
- W3090219715 cites W2604901683 @default.
- W3090219715 cites W2614556791 @default.
- W3090219715 cites W2624697962 @default.
- W3090219715 cites W2739328240 @default.
- W3090219715 cites W2749867961 @default.
- W3090219715 cites W2770524013 @default.
- W3090219715 cites W2786635213 @default.
- W3090219715 cites W2793981925 @default.
- W3090219715 cites W2896104794 @default.
- W3090219715 cites W2901634660 @default.
- W3090219715 cites W2906103632 @default.
- W3090219715 cites W2940553617 @default.
- W3090219715 cites W2998103151 @default.
- W3090219715 cites W3001118548 @default.
- W3090219715 cites W3002108456 @default.
- W3090219715 cites W3002533507 @default.
- W3090219715 cites W3008928028 @default.
- W3090219715 cites W3014080169 @default.
- W3090219715 cites W3015987835 @default.
- W3090219715 cites W3035399681 @default.
- W3090219715 cites W3165656738 @default.
- W3090219715 cites W4247943214 @default.
- W3090219715 cites W4361865037 @default.
- W3090219715 cites W1939260950 @default.
- W3090219715 doi "https://doi.org/10.1016/j.amsu.2020.09.044" @default.
- W3090219715 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7532803" @default.
- W3090219715 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33042536" @default.
- W3090219715 hasPublicationYear "2020" @default.
- W3090219715 type Work @default.
- W3090219715 sameAs 3090219715 @default.
- W3090219715 citedByCount "49" @default.
- W3090219715 countsByYear W30902197152020 @default.
- W3090219715 countsByYear W30902197152021 @default.
- W3090219715 countsByYear W30902197152022 @default.
- W3090219715 countsByYear W30902197152023 @default.
- W3090219715 crossrefType "journal-article" @default.
- W3090219715 hasAuthorship W3090219715A5032268509 @default.
- W3090219715 hasAuthorship W3090219715A5045778233 @default.
- W3090219715 hasAuthorship W3090219715A5046232417 @default.
- W3090219715 hasAuthorship W3090219715A5046346208 @default.
- W3090219715 hasAuthorship W3090219715A5046974631 @default.
- W3090219715 hasAuthorship W3090219715A5052050239 @default.
- W3090219715 hasAuthorship W3090219715A5054119515 @default.
- W3090219715 hasAuthorship W3090219715A5069510468 @default.
- W3090219715 hasAuthorship W3090219715A5070304475 @default.
- W3090219715 hasAuthorship W3090219715A5083110866 @default.
- W3090219715 hasBestOaLocation W30902197151 @default.
- W3090219715 hasConcept C118552586 @default.
- W3090219715 hasConcept C126322002 @default.
- W3090219715 hasConcept C167135981 @default.
- W3090219715 hasConcept C194828623 @default.
- W3090219715 hasConcept C198433322 @default.
- W3090219715 hasConcept C2777120189 @default.
- W3090219715 hasConcept C2777671062 @default.
- W3090219715 hasConcept C2777914695 @default.
- W3090219715 hasConcept C2778358025 @default.
- W3090219715 hasConcept C2779134260 @default.