Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090219974> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3090219974 abstract "We propose a new approach for real time inference of occupancy maps for self-driving cars using deep neural networks (DNN) named NeuralMapper. NeuralMapper receives LiDAR sensor data as input and generates as output the occupancy grid map around the car. NeuralMapper infers the probability of each grid map cell from one of the three following classes: Occupied, Free and Unknown. The system was tested with two datasets and achieved an average accuracy of 76.48% and 73.81%. We also evaluated our approach for localization purposes in a self-driving car and most of the localization pose errors were less than 0.20m with an RMSE of 0.28 which are close to the results in the literature for methods using other grid mapping approaches." @default.
- W3090219974 created "2020-10-08" @default.
- W3090219974 creator A5012362237 @default.
- W3090219974 creator A5029154156 @default.
- W3090219974 creator A5035595217 @default.
- W3090219974 creator A5037893575 @default.
- W3090219974 creator A5056260430 @default.
- W3090219974 creator A5064310592 @default.
- W3090219974 creator A5066778066 @default.
- W3090219974 creator A5085956475 @default.
- W3090219974 date "2020-07-01" @default.
- W3090219974 modified "2023-10-01" @default.
- W3090219974 title "A Large-Scale Mapping Method Based on Deep Neural Networks Applied to Self-Driving Car Localization" @default.
- W3090219974 cites W1942635339 @default.
- W3090219974 cites W2015531508 @default.
- W3090219974 cites W2021063678 @default.
- W3090219974 cites W2132777443 @default.
- W3090219974 cites W2150066425 @default.
- W3090219974 cites W2156163116 @default.
- W3090219974 cites W2544812866 @default.
- W3090219974 cites W2562137921 @default.
- W3090219974 cites W2564910695 @default.
- W3090219974 cites W2567454113 @default.
- W3090219974 cites W2596750703 @default.
- W3090219974 cites W2605103573 @default.
- W3090219974 cites W2953711573 @default.
- W3090219974 cites W2962912109 @default.
- W3090219974 cites W2968443604 @default.
- W3090219974 cites W2969652498 @default.
- W3090219974 cites W3103946064 @default.
- W3090219974 cites W3106255814 @default.
- W3090219974 cites W2734507668 @default.
- W3090219974 doi "https://doi.org/10.1109/ijcnn48605.2020.9207449" @default.
- W3090219974 hasPublicationYear "2020" @default.
- W3090219974 type Work @default.
- W3090219974 sameAs 3090219974 @default.
- W3090219974 citedByCount "6" @default.
- W3090219974 countsByYear W30902199742022 @default.
- W3090219974 countsByYear W30902199742023 @default.
- W3090219974 crossrefType "proceedings-article" @default.
- W3090219974 hasAuthorship W3090219974A5012362237 @default.
- W3090219974 hasAuthorship W3090219974A5029154156 @default.
- W3090219974 hasAuthorship W3090219974A5035595217 @default.
- W3090219974 hasAuthorship W3090219974A5037893575 @default.
- W3090219974 hasAuthorship W3090219974A5056260430 @default.
- W3090219974 hasAuthorship W3090219974A5064310592 @default.
- W3090219974 hasAuthorship W3090219974A5066778066 @default.
- W3090219974 hasAuthorship W3090219974A5085956475 @default.
- W3090219974 hasConcept C127413603 @default.
- W3090219974 hasConcept C154945302 @default.
- W3090219974 hasConcept C171146098 @default.
- W3090219974 hasConcept C205649164 @default.
- W3090219974 hasConcept C2778755073 @default.
- W3090219974 hasConcept C3018391801 @default.
- W3090219974 hasConcept C31972630 @default.
- W3090219974 hasConcept C41008148 @default.
- W3090219974 hasConcept C50644808 @default.
- W3090219974 hasConcept C58640448 @default.
- W3090219974 hasConceptScore W3090219974C127413603 @default.
- W3090219974 hasConceptScore W3090219974C154945302 @default.
- W3090219974 hasConceptScore W3090219974C171146098 @default.
- W3090219974 hasConceptScore W3090219974C205649164 @default.
- W3090219974 hasConceptScore W3090219974C2778755073 @default.
- W3090219974 hasConceptScore W3090219974C3018391801 @default.
- W3090219974 hasConceptScore W3090219974C31972630 @default.
- W3090219974 hasConceptScore W3090219974C41008148 @default.
- W3090219974 hasConceptScore W3090219974C50644808 @default.
- W3090219974 hasConceptScore W3090219974C58640448 @default.
- W3090219974 hasLocation W30902199741 @default.
- W3090219974 hasOpenAccess W3090219974 @default.
- W3090219974 hasPrimaryLocation W30902199741 @default.
- W3090219974 hasRelatedWork W1891287906 @default.
- W3090219974 hasRelatedWork W1969923398 @default.
- W3090219974 hasRelatedWork W2036807459 @default.
- W3090219974 hasRelatedWork W2058170566 @default.
- W3090219974 hasRelatedWork W2170022336 @default.
- W3090219974 hasRelatedWork W2229312674 @default.
- W3090219974 hasRelatedWork W258625772 @default.
- W3090219974 hasRelatedWork W2755342338 @default.
- W3090219974 hasRelatedWork W2772917594 @default.
- W3090219974 hasRelatedWork W3116076068 @default.
- W3090219974 isParatext "false" @default.
- W3090219974 isRetracted "false" @default.
- W3090219974 magId "3090219974" @default.
- W3090219974 workType "article" @default.