Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090243807> ?p ?o ?g. }
- W3090243807 abstract "Training neural networks for neuromorphic deployment is non-trivial. There have been a variety of approaches proposed to adapt back-propagation or back-propagation-like algorithms appropriate for training. Considering that these networks often have very different performance characteristics than traditional neural networks, it is often unclear how to set either the network topology or the hyperparameters to achieve optimal performance. In this work, we introduce a Bayesian approach for optimizing the hyperparameters of an algorithm for training binary communication networks that can be deployed to neuromorphic hardware. We show that by optimizing the hyperparameters on this algorithm for each dataset, we can achieve improvements in accuracy over the previous state-of-the-art for this algorithm on each dataset (by up to 15 percent). This jump in performance continues to emphasize the potential when converting traditional neural networks to binary communication applicable to neuromorphic hardware." @default.
- W3090243807 created "2020-10-08" @default.
- W3090243807 creator A5000241304 @default.
- W3090243807 creator A5029444976 @default.
- W3090243807 creator A5031161187 @default.
- W3090243807 creator A5033784578 @default.
- W3090243807 creator A5044629855 @default.
- W3090243807 creator A5046319147 @default.
- W3090243807 creator A5047288261 @default.
- W3090243807 creator A5048299007 @default.
- W3090243807 creator A5054738532 @default.
- W3090243807 creator A5070858681 @default.
- W3090243807 creator A5078825022 @default.
- W3090243807 date "2020-07-01" @default.
- W3090243807 modified "2023-09-27" @default.
- W3090243807 title "Hyperparameter Optimization in Binary Communication Networks for Neuromorphic Deployment" @default.
- W3090243807 cites W1806891645 @default.
- W3090243807 cites W1960182310 @default.
- W3090243807 cites W2159951683 @default.
- W3090243807 cites W2189149359 @default.
- W3090243807 cites W2192203593 @default.
- W3090243807 cites W2531650413 @default.
- W3090243807 cites W2555267483 @default.
- W3090243807 cites W2580087858 @default.
- W3090243807 cites W2593744649 @default.
- W3090243807 cites W2767077319 @default.
- W3090243807 cites W2775079417 @default.
- W3090243807 cites W2783525259 @default.
- W3090243807 cites W2803434805 @default.
- W3090243807 cites W2892077605 @default.
- W3090243807 cites W2905533880 @default.
- W3090243807 cites W2913525628 @default.
- W3090243807 cites W2949161946 @default.
- W3090243807 cites W2963216850 @default.
- W3090243807 cites W2964232044 @default.
- W3090243807 cites W2964338223 @default.
- W3090243807 cites W2971198113 @default.
- W3090243807 cites W2972809290 @default.
- W3090243807 cites W2977464668 @default.
- W3090243807 cites W2998297871 @default.
- W3090243807 cites W3007579076 @default.
- W3090243807 cites W3008164802 @default.
- W3090243807 cites W3045337512 @default.
- W3090243807 cites W3098917398 @default.
- W3090243807 doi "https://doi.org/10.1109/ijcnn48605.2020.9206872" @default.
- W3090243807 hasPublicationYear "2020" @default.
- W3090243807 type Work @default.
- W3090243807 sameAs 3090243807 @default.
- W3090243807 citedByCount "3" @default.
- W3090243807 countsByYear W30902438072020 @default.
- W3090243807 countsByYear W30902438072021 @default.
- W3090243807 crossrefType "proceedings-article" @default.
- W3090243807 hasAuthorship W3090243807A5000241304 @default.
- W3090243807 hasAuthorship W3090243807A5029444976 @default.
- W3090243807 hasAuthorship W3090243807A5031161187 @default.
- W3090243807 hasAuthorship W3090243807A5033784578 @default.
- W3090243807 hasAuthorship W3090243807A5044629855 @default.
- W3090243807 hasAuthorship W3090243807A5046319147 @default.
- W3090243807 hasAuthorship W3090243807A5047288261 @default.
- W3090243807 hasAuthorship W3090243807A5048299007 @default.
- W3090243807 hasAuthorship W3090243807A5054738532 @default.
- W3090243807 hasAuthorship W3090243807A5070858681 @default.
- W3090243807 hasAuthorship W3090243807A5078825022 @default.
- W3090243807 hasBestOaLocation W30902438072 @default.
- W3090243807 hasConcept C105339364 @default.
- W3090243807 hasConcept C115903868 @default.
- W3090243807 hasConcept C118524514 @default.
- W3090243807 hasConcept C151927369 @default.
- W3090243807 hasConcept C154945302 @default.
- W3090243807 hasConcept C33923547 @default.
- W3090243807 hasConcept C41008148 @default.
- W3090243807 hasConcept C48372109 @default.
- W3090243807 hasConcept C50644808 @default.
- W3090243807 hasConcept C8642999 @default.
- W3090243807 hasConcept C94375191 @default.
- W3090243807 hasConceptScore W3090243807C105339364 @default.
- W3090243807 hasConceptScore W3090243807C115903868 @default.
- W3090243807 hasConceptScore W3090243807C118524514 @default.
- W3090243807 hasConceptScore W3090243807C151927369 @default.
- W3090243807 hasConceptScore W3090243807C154945302 @default.
- W3090243807 hasConceptScore W3090243807C33923547 @default.
- W3090243807 hasConceptScore W3090243807C41008148 @default.
- W3090243807 hasConceptScore W3090243807C48372109 @default.
- W3090243807 hasConceptScore W3090243807C50644808 @default.
- W3090243807 hasConceptScore W3090243807C8642999 @default.
- W3090243807 hasConceptScore W3090243807C94375191 @default.
- W3090243807 hasLocation W30902438071 @default.
- W3090243807 hasLocation W30902438072 @default.
- W3090243807 hasLocation W30902438073 @default.
- W3090243807 hasLocation W30902438074 @default.
- W3090243807 hasOpenAccess W3090243807 @default.
- W3090243807 hasPrimaryLocation W30902438071 @default.
- W3090243807 hasRelatedWork W1969481115 @default.
- W3090243807 hasRelatedWork W2021850411 @default.
- W3090243807 hasRelatedWork W2162462041 @default.
- W3090243807 hasRelatedWork W2951049725 @default.
- W3090243807 hasRelatedWork W3008164802 @default.
- W3090243807 hasRelatedWork W3021827610 @default.
- W3090243807 hasRelatedWork W3031505884 @default.
- W3090243807 hasRelatedWork W3035804904 @default.