Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090253812> ?p ?o ?g. }
- W3090253812 endingPage "103581" @default.
- W3090253812 startingPage "103581" @default.
- W3090253812 abstract "Currently, a major limitation for natural language processing (NLP) analyses in clinical applications is that concepts are not effectively referenced in various forms across different texts. This paper introduces Multi-Ontology Refined Embeddings (MORE), a novel hybrid framework that incorporates domain knowledge from multiple ontologies into a distributional semantic model, learned from a corpus of clinical text.We use the RadCore and MIMIC-III free-text datasets for the corpus-based component of MORE. For the ontology-based part, we use the Medical Subject Headings (MeSH) ontology and three state-of-the-art ontology-based similarity measures. In our approach, we propose a new learning objective, modified from the sigmoid cross-entropy objective function.We used two established datasets of semantic similarities among biomedical concept pairs to evaluate the quality of the generated word embeddings. On the first dataset with 29 concept pairs, with similarity scores established by physicians and medical coders, MORE's similarity scores have the highest combined correlation (0.633), which is 5.0% higher than that of the baseline model, and 12.4% higher than that of the best ontology-based similarity measure. On the second dataset with 449 concept pairs, MORE's similarity scores have a correlation of 0.481, based on the average of four medical residents' similarity ratings, and that outperforms the skip-gram model by 8.1%, and the best ontology measure by 6.9%. Furthermore, MORE outperforms three pre-trained transformer-based word embedding models (i.e., BERT, ClinicalBERT, and BioBERT) on both datasets.MORE incorporates knowledge from several biomedical ontologies into an existing corpus-based distributional semantics model, improving both the accuracy of the learned word embeddings and the extensibility of the model to a broader range of biomedical concepts. MORE allows for more accurate clustering of concepts across a wide range of applications, such as analyzing patient health records to identify subjects with similar pathologies, or integrating heterogeneous clinical data to improve interoperability between hospitals." @default.
- W3090253812 created "2020-10-08" @default.
- W3090253812 creator A5019616034 @default.
- W3090253812 creator A5024332817 @default.
- W3090253812 creator A5051476268 @default.
- W3090253812 creator A5072074353 @default.
- W3090253812 creator A5081410318 @default.
- W3090253812 date "2020-11-01" @default.
- W3090253812 modified "2023-10-15" @default.
- W3090253812 title "Multi-Ontology Refined Embeddings (MORE): A hybrid multi-ontology and corpus-based semantic representation model for biomedical concepts" @default.
- W3090253812 cites W1503259811 @default.
- W3090253812 cites W1869282115 @default.
- W3090253812 cites W2000963751 @default.
- W3090253812 cites W2072640685 @default.
- W3090253812 cites W2084168100 @default.
- W3090253812 cites W2084377579 @default.
- W3090253812 cites W2087739686 @default.
- W3090253812 cites W2099307202 @default.
- W3090253812 cites W2125076245 @default.
- W3090253812 cites W2136480620 @default.
- W3090253812 cites W2140581050 @default.
- W3090253812 cites W2146089916 @default.
- W3090253812 cites W2150730101 @default.
- W3090253812 cites W2162800060 @default.
- W3090253812 cites W2196348026 @default.
- W3090253812 cites W2250930514 @default.
- W3090253812 cites W2251157338 @default.
- W3090253812 cites W2396881363 @default.
- W3090253812 cites W2515248967 @default.
- W3090253812 cites W2563364981 @default.
- W3090253812 cites W2750079440 @default.
- W3090253812 cites W2769851464 @default.
- W3090253812 cites W2772528510 @default.
- W3090253812 cites W2793745141 @default.
- W3090253812 cites W2794757971 @default.
- W3090253812 cites W2796247201 @default.
- W3090253812 cites W2911489562 @default.
- W3090253812 cites W2963716420 @default.
- W3090253812 cites W2979826702 @default.
- W3090253812 cites W3185817124 @default.
- W3090253812 cites W68293321 @default.
- W3090253812 doi "https://doi.org/10.1016/j.jbi.2020.103581" @default.
- W3090253812 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7665985" @default.
- W3090253812 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33010425" @default.
- W3090253812 hasPublicationYear "2020" @default.
- W3090253812 type Work @default.
- W3090253812 sameAs 3090253812 @default.
- W3090253812 citedByCount "7" @default.
- W3090253812 countsByYear W30902538122021 @default.
- W3090253812 countsByYear W30902538122023 @default.
- W3090253812 crossrefType "journal-article" @default.
- W3090253812 hasAuthorship W3090253812A5019616034 @default.
- W3090253812 hasAuthorship W3090253812A5024332817 @default.
- W3090253812 hasAuthorship W3090253812A5051476268 @default.
- W3090253812 hasAuthorship W3090253812A5072074353 @default.
- W3090253812 hasAuthorship W3090253812A5081410318 @default.
- W3090253812 hasBestOaLocation W30902538121 @default.
- W3090253812 hasConcept C103278499 @default.
- W3090253812 hasConcept C111472728 @default.
- W3090253812 hasConcept C115961682 @default.
- W3090253812 hasConcept C130318100 @default.
- W3090253812 hasConcept C138885662 @default.
- W3090253812 hasConcept C154945302 @default.
- W3090253812 hasConcept C204321447 @default.
- W3090253812 hasConcept C23123220 @default.
- W3090253812 hasConcept C25810664 @default.
- W3090253812 hasConcept C2777462759 @default.
- W3090253812 hasConcept C41008148 @default.
- W3090253812 hasConcept C41608201 @default.
- W3090253812 hasConcept C69505689 @default.
- W3090253812 hasConceptScore W3090253812C103278499 @default.
- W3090253812 hasConceptScore W3090253812C111472728 @default.
- W3090253812 hasConceptScore W3090253812C115961682 @default.
- W3090253812 hasConceptScore W3090253812C130318100 @default.
- W3090253812 hasConceptScore W3090253812C138885662 @default.
- W3090253812 hasConceptScore W3090253812C154945302 @default.
- W3090253812 hasConceptScore W3090253812C204321447 @default.
- W3090253812 hasConceptScore W3090253812C23123220 @default.
- W3090253812 hasConceptScore W3090253812C25810664 @default.
- W3090253812 hasConceptScore W3090253812C2777462759 @default.
- W3090253812 hasConceptScore W3090253812C41008148 @default.
- W3090253812 hasConceptScore W3090253812C41608201 @default.
- W3090253812 hasConceptScore W3090253812C69505689 @default.
- W3090253812 hasFunder F4320337351 @default.
- W3090253812 hasFunder F4320337372 @default.
- W3090253812 hasLocation W30902538121 @default.
- W3090253812 hasLocation W30902538122 @default.
- W3090253812 hasLocation W30902538123 @default.
- W3090253812 hasLocation W30902538124 @default.
- W3090253812 hasOpenAccess W3090253812 @default.
- W3090253812 hasPrimaryLocation W30902538121 @default.
- W3090253812 hasRelatedWork W2041025542 @default.
- W3090253812 hasRelatedWork W2137167118 @default.
- W3090253812 hasRelatedWork W2158017000 @default.
- W3090253812 hasRelatedWork W2186284405 @default.
- W3090253812 hasRelatedWork W2392675926 @default.
- W3090253812 hasRelatedWork W2887442125 @default.
- W3090253812 hasRelatedWork W2935713639 @default.