Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090255985> ?p ?o ?g. }
- W3090255985 endingPage "52" @default.
- W3090255985 startingPage "52" @default.
- W3090255985 abstract "Purpose: Numerous angiographic images with high variability in quality are obtained during each ultra-widefield fluorescein angiography (UWFA) acquisition session. This study evaluated the feasibility of an automated system for image quality classification and selection using deep learning. Methods: The training set was comprised of 3543 UWFA images. Ground-truth image quality was assessed by expert image review and classified into one of four categories (ungradable, poor, good, or best) based on contrast, field of view, media opacity, and obscuration from external features. Two test sets, including randomly selected 392 images separated from the training set and an independent balanced image set composed of 50 ungradable/poor and 50 good/best images, assessed the model performance and bias. Results: In the randomly selected and balanced test sets, the automated quality assessment system showed overall accuracy of 89.0% and 94.0% for distinguishing between gradable and ungradable images, with sensitivity of 90.5% and 98.6% and specificity of 87.0% and 81.5%, respectively. The receiver operating characteristic curve measuring performance of two-class classification (ungradable and gradable) had an area under the curve of 0.920 in the randomly selected set and 0.980 in the balanced set. Conclusions: A deep learning classification model demonstrates the feasibility of automatic classification of UWFA image quality. Clinical application of this system might greatly reduce manual image grading workload, allow quality-based image presentation to clinicians, and provide near-instantaneous feedback on image quality during image acquisition for photographers. Translational Relevance: The UWFA image quality classification tool may significantly reduce manual grading for clinical- and research-related work, providing instantaneous and reliable feedback on image quality." @default.
- W3090255985 created "2020-10-08" @default.
- W3090255985 creator A5011622446 @default.
- W3090255985 creator A5017527346 @default.
- W3090255985 creator A5023927257 @default.
- W3090255985 creator A5030776107 @default.
- W3090255985 creator A5042719722 @default.
- W3090255985 creator A5060701866 @default.
- W3090255985 creator A5072863451 @default.
- W3090255985 creator A5073193063 @default.
- W3090255985 creator A5082501044 @default.
- W3090255985 date "2020-09-17" @default.
- W3090255985 modified "2023-10-01" @default.
- W3090255985 title "Automated Quality Assessment and Image Selection of Ultra-Widefield Fluorescein Angiography Images through Deep Learning" @default.
- W3090255985 cites W1901129140 @default.
- W3090255985 cites W1985529611 @default.
- W3090255985 cites W2013425736 @default.
- W3090255985 cites W2048301902 @default.
- W3090255985 cites W2059308873 @default.
- W3090255985 cites W2328462406 @default.
- W3090255985 cites W2522648674 @default.
- W3090255985 cites W2557738935 @default.
- W3090255985 cites W2592399093 @default.
- W3090255985 cites W2598666589 @default.
- W3090255985 cites W2606329851 @default.
- W3090255985 cites W2608854843 @default.
- W3090255985 cites W2614885775 @default.
- W3090255985 cites W2621748147 @default.
- W3090255985 cites W2803921547 @default.
- W3090255985 cites W2888424632 @default.
- W3090255985 cites W2892773404 @default.
- W3090255985 cites W2946391413 @default.
- W3090255985 doi "https://doi.org/10.1167/tvst.9.2.52" @default.
- W3090255985 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7500112" @default.
- W3090255985 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32995069" @default.
- W3090255985 hasPublicationYear "2020" @default.
- W3090255985 type Work @default.
- W3090255985 sameAs 3090255985 @default.
- W3090255985 citedByCount "10" @default.
- W3090255985 countsByYear W30902559852021 @default.
- W3090255985 countsByYear W30902559852022 @default.
- W3090255985 countsByYear W30902559852023 @default.
- W3090255985 crossrefType "journal-article" @default.
- W3090255985 hasAuthorship W3090255985A5011622446 @default.
- W3090255985 hasAuthorship W3090255985A5017527346 @default.
- W3090255985 hasAuthorship W3090255985A5023927257 @default.
- W3090255985 hasAuthorship W3090255985A5030776107 @default.
- W3090255985 hasAuthorship W3090255985A5042719722 @default.
- W3090255985 hasAuthorship W3090255985A5060701866 @default.
- W3090255985 hasAuthorship W3090255985A5072863451 @default.
- W3090255985 hasAuthorship W3090255985A5073193063 @default.
- W3090255985 hasAuthorship W3090255985A5082501044 @default.
- W3090255985 hasBestOaLocation W30902559851 @default.
- W3090255985 hasConcept C111919701 @default.
- W3090255985 hasConcept C115961682 @default.
- W3090255985 hasConcept C119857082 @default.
- W3090255985 hasConcept C153180895 @default.
- W3090255985 hasConcept C154945302 @default.
- W3090255985 hasConcept C169903167 @default.
- W3090255985 hasConcept C177264268 @default.
- W3090255985 hasConcept C199360897 @default.
- W3090255985 hasConcept C2778476105 @default.
- W3090255985 hasConcept C31972630 @default.
- W3090255985 hasConcept C41008148 @default.
- W3090255985 hasConcept C55020928 @default.
- W3090255985 hasConcept C58471807 @default.
- W3090255985 hasConceptScore W3090255985C111919701 @default.
- W3090255985 hasConceptScore W3090255985C115961682 @default.
- W3090255985 hasConceptScore W3090255985C119857082 @default.
- W3090255985 hasConceptScore W3090255985C153180895 @default.
- W3090255985 hasConceptScore W3090255985C154945302 @default.
- W3090255985 hasConceptScore W3090255985C169903167 @default.
- W3090255985 hasConceptScore W3090255985C177264268 @default.
- W3090255985 hasConceptScore W3090255985C199360897 @default.
- W3090255985 hasConceptScore W3090255985C2778476105 @default.
- W3090255985 hasConceptScore W3090255985C31972630 @default.
- W3090255985 hasConceptScore W3090255985C41008148 @default.
- W3090255985 hasConceptScore W3090255985C55020928 @default.
- W3090255985 hasConceptScore W3090255985C58471807 @default.
- W3090255985 hasIssue "2" @default.
- W3090255985 hasLocation W30902559851 @default.
- W3090255985 hasLocation W30902559852 @default.
- W3090255985 hasOpenAccess W3090255985 @default.
- W3090255985 hasPrimaryLocation W30902559851 @default.
- W3090255985 hasRelatedWork W1891287906 @default.
- W3090255985 hasRelatedWork W1969923398 @default.
- W3090255985 hasRelatedWork W2036807459 @default.
- W3090255985 hasRelatedWork W2066259560 @default.
- W3090255985 hasRelatedWork W2314755979 @default.
- W3090255985 hasRelatedWork W2329086085 @default.
- W3090255985 hasRelatedWork W2390710122 @default.
- W3090255985 hasRelatedWork W2611645609 @default.
- W3090255985 hasRelatedWork W2775347418 @default.
- W3090255985 hasRelatedWork W3217021205 @default.
- W3090255985 hasVolume "9" @default.
- W3090255985 isParatext "false" @default.
- W3090255985 isRetracted "false" @default.
- W3090255985 magId "3090255985" @default.