Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090276718> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W3090276718 abstract "Dynamic selection techniques aim at selecting the local experts around each test sample in particular for performing its classification. While generating the classifier on a local scope may make it easier for singling out the locally competent ones, as in the online local pool (OLP) technique, using the same base-classifier model in uneven distributions may restrict the local level of competence, since each region may have a data distribution that favors one model over the others. Thus, we propose in this work a problem-independent dynamic base-classifier model recommendation for the OLP technique, which uses information regarding the behavior of a portfolio of models over the samples of different problems to recommend one (or several) of them in a per-instance manner. Our proposed framework builds a multi-label meta-classifier responsible for recommending a set of relevant base-classifier models based on the local data complexity of the region surrounding each test sample. The OLP technique then produces a local pool with the model that yields the highest probability score of the meta-classifier. Experimental results show that different data distributions favored different model types on a local scope. Moreover, based on the performance of an ideal model type selector, it was observed that there is a clear advantage in choosing a relevant base-classifier model for each test instance in particular. Overall, the proposed model type recommender system yielded a statistically similar performance to the original OLP with fixed base-classifier model. However, the proposed framework struggled to recommend at least one relevant model type specially for the samples with low labelset cardinality. Given the novelty of the approach and the gap in performance between the proposed framework and the ideal selector, we regard this as a promising research direction. Code available at github.com/marianaasouza/dynamic-model-recommender." @default.
- W3090276718 created "2020-10-08" @default.
- W3090276718 creator A5019553116 @default.
- W3090276718 creator A5026340083 @default.
- W3090276718 creator A5079775579 @default.
- W3090276718 creator A5084140678 @default.
- W3090276718 date "2020-07-01" @default.
- W3090276718 modified "2023-10-16" @default.
- W3090276718 title "Multi-label learning for dynamic model type recommendation" @default.
- W3090276718 cites W1662118192 @default.
- W3090276718 cites W1786906056 @default.
- W3090276718 cites W1975846642 @default.
- W3090276718 cites W1988844742 @default.
- W3090276718 cites W2022477494 @default.
- W3090276718 cites W2024217857 @default.
- W3090276718 cites W2038705219 @default.
- W3090276718 cites W2062066700 @default.
- W3090276718 cites W2114315281 @default.
- W3090276718 cites W2156935079 @default.
- W3090276718 cites W2158275940 @default.
- W3090276718 cites W2158698691 @default.
- W3090276718 cites W2160767978 @default.
- W3090276718 cites W2160958420 @default.
- W3090276718 cites W2182722412 @default.
- W3090276718 cites W2488735262 @default.
- W3090276718 cites W2577408049 @default.
- W3090276718 cites W2724383523 @default.
- W3090276718 cites W2734997742 @default.
- W3090276718 cites W2755371172 @default.
- W3090276718 cites W2775947831 @default.
- W3090276718 cites W2885260234 @default.
- W3090276718 cites W2887979259 @default.
- W3090276718 cites W2899346980 @default.
- W3090276718 cites W2902777483 @default.
- W3090276718 cites W2912934387 @default.
- W3090276718 cites W2913762597 @default.
- W3090276718 cites W2973136425 @default.
- W3090276718 cites W2977346222 @default.
- W3090276718 doi "https://doi.org/10.1109/ijcnn48605.2020.9207644" @default.
- W3090276718 hasPublicationYear "2020" @default.
- W3090276718 type Work @default.
- W3090276718 sameAs 3090276718 @default.
- W3090276718 citedByCount "1" @default.
- W3090276718 countsByYear W30902767182022 @default.
- W3090276718 crossrefType "proceedings-article" @default.
- W3090276718 hasAuthorship W3090276718A5019553116 @default.
- W3090276718 hasAuthorship W3090276718A5026340083 @default.
- W3090276718 hasAuthorship W3090276718A5079775579 @default.
- W3090276718 hasAuthorship W3090276718A5084140678 @default.
- W3090276718 hasBestOaLocation W30902767182 @default.
- W3090276718 hasConcept C119857082 @default.
- W3090276718 hasConcept C124101348 @default.
- W3090276718 hasConcept C154945302 @default.
- W3090276718 hasConcept C41008148 @default.
- W3090276718 hasConcept C95623464 @default.
- W3090276718 hasConceptScore W3090276718C119857082 @default.
- W3090276718 hasConceptScore W3090276718C124101348 @default.
- W3090276718 hasConceptScore W3090276718C154945302 @default.
- W3090276718 hasConceptScore W3090276718C41008148 @default.
- W3090276718 hasConceptScore W3090276718C95623464 @default.
- W3090276718 hasLocation W30902767181 @default.
- W3090276718 hasLocation W30902767182 @default.
- W3090276718 hasOpenAccess W3090276718 @default.
- W3090276718 hasPrimaryLocation W30902767181 @default.
- W3090276718 hasRelatedWork W10719664 @default.
- W3090276718 hasRelatedWork W12829028 @default.
- W3090276718 hasRelatedWork W13034104 @default.
- W3090276718 hasRelatedWork W14115579 @default.
- W3090276718 hasRelatedWork W482721 @default.
- W3090276718 hasRelatedWork W6680660 @default.
- W3090276718 hasRelatedWork W728297 @default.
- W3090276718 hasRelatedWork W8198582 @default.
- W3090276718 hasRelatedWork W8248617 @default.
- W3090276718 hasRelatedWork W6520261 @default.
- W3090276718 isParatext "false" @default.
- W3090276718 isRetracted "false" @default.
- W3090276718 magId "3090276718" @default.
- W3090276718 workType "article" @default.