Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090295587> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3090295587 abstract "Weibo, the most widely-used social media in China, makes researchers highly regard its profound impact in public and gather moods for social computing and analysis, such as financial prediction. Most existing literatures concern excessively on text semantic or sentiment mining techniques, but neglect the procedure of moods dissemination and its factors. This paper proposes an integrated framework of social media moods mining, which creatively focuses on information transmission and propagating factors analysis, to predict stock prices more accurately. For the part of propagating factors on social media, several essential factors are distinguished in the dissemination process, such as emotional absorption of forwarding, influence of content and poster, user categories, release time, etc. to optimize the fitting effect of original model. And the count of forwarding also matters on predicting stock prices. Searching a given finance-related keyword, from Weibo we collected over 500,000 micro-blogs and their user information. Then we adopt the proposed integrated framework to predict stock price fluctuation, as well as the simple neural network method. Experiments demonstrate that the former outperformed the latter. The results also show that user categories and the count of forwarding differ on the lag phase of influence. And more, this paper studies the fitting effect of prediction models for different periods of the stock curve. The results indicate that the model works the best in the rising periods of stock prices curves, relatively well in the declining and the worst in the random fluctuating." @default.
- W3090295587 created "2020-10-08" @default.
- W3090295587 creator A5002063716 @default.
- W3090295587 creator A5006443452 @default.
- W3090295587 creator A5036566914 @default.
- W3090295587 date "2020-09-30" @default.
- W3090295587 modified "2023-09-23" @default.
- W3090295587 title "Exploring propagation factors of social media moods for stock prices prediction" @default.
- W3090295587 cites W1979432867 @default.
- W3090295587 cites W2001653897 @default.
- W3090295587 cites W2004214228 @default.
- W3090295587 cites W2026318959 @default.
- W3090295587 cites W2037625889 @default.
- W3090295587 cites W2087665422 @default.
- W3090295587 cites W2171468534 @default.
- W3090295587 doi "https://doi.org/10.3233/web-200441" @default.
- W3090295587 hasPublicationYear "2020" @default.
- W3090295587 type Work @default.
- W3090295587 sameAs 3090295587 @default.
- W3090295587 citedByCount "0" @default.
- W3090295587 crossrefType "journal-article" @default.
- W3090295587 hasAuthorship W3090295587A5002063716 @default.
- W3090295587 hasAuthorship W3090295587A5006443452 @default.
- W3090295587 hasAuthorship W3090295587A5036566914 @default.
- W3090295587 hasConcept C105795698 @default.
- W3090295587 hasConcept C119857082 @default.
- W3090295587 hasConcept C121194460 @default.
- W3090295587 hasConcept C124101348 @default.
- W3090295587 hasConcept C127413603 @default.
- W3090295587 hasConcept C136764020 @default.
- W3090295587 hasConcept C143724316 @default.
- W3090295587 hasConcept C149782125 @default.
- W3090295587 hasConcept C151730666 @default.
- W3090295587 hasConcept C162324750 @default.
- W3090295587 hasConcept C204036174 @default.
- W3090295587 hasConcept C2522767166 @default.
- W3090295587 hasConcept C2988984586 @default.
- W3090295587 hasConcept C31258907 @default.
- W3090295587 hasConcept C33923547 @default.
- W3090295587 hasConcept C41008148 @default.
- W3090295587 hasConcept C518677369 @default.
- W3090295587 hasConcept C66402592 @default.
- W3090295587 hasConcept C75778745 @default.
- W3090295587 hasConcept C78519656 @default.
- W3090295587 hasConcept C86803240 @default.
- W3090295587 hasConceptScore W3090295587C105795698 @default.
- W3090295587 hasConceptScore W3090295587C119857082 @default.
- W3090295587 hasConceptScore W3090295587C121194460 @default.
- W3090295587 hasConceptScore W3090295587C124101348 @default.
- W3090295587 hasConceptScore W3090295587C127413603 @default.
- W3090295587 hasConceptScore W3090295587C136764020 @default.
- W3090295587 hasConceptScore W3090295587C143724316 @default.
- W3090295587 hasConceptScore W3090295587C149782125 @default.
- W3090295587 hasConceptScore W3090295587C151730666 @default.
- W3090295587 hasConceptScore W3090295587C162324750 @default.
- W3090295587 hasConceptScore W3090295587C204036174 @default.
- W3090295587 hasConceptScore W3090295587C2522767166 @default.
- W3090295587 hasConceptScore W3090295587C2988984586 @default.
- W3090295587 hasConceptScore W3090295587C31258907 @default.
- W3090295587 hasConceptScore W3090295587C33923547 @default.
- W3090295587 hasConceptScore W3090295587C41008148 @default.
- W3090295587 hasConceptScore W3090295587C518677369 @default.
- W3090295587 hasConceptScore W3090295587C66402592 @default.
- W3090295587 hasConceptScore W3090295587C75778745 @default.
- W3090295587 hasConceptScore W3090295587C78519656 @default.
- W3090295587 hasConceptScore W3090295587C86803240 @default.
- W3090295587 hasLocation W30902955871 @default.
- W3090295587 hasOpenAccess W3090295587 @default.
- W3090295587 hasPrimaryLocation W30902955871 @default.
- W3090295587 hasRelatedWork W10307964 @default.
- W3090295587 hasRelatedWork W12448093 @default.
- W3090295587 hasRelatedWork W14486172 @default.
- W3090295587 hasRelatedWork W1820138 @default.
- W3090295587 hasRelatedWork W395950 @default.
- W3090295587 hasRelatedWork W4149387 @default.
- W3090295587 hasRelatedWork W6222302 @default.
- W3090295587 hasRelatedWork W8190090 @default.
- W3090295587 hasRelatedWork W9225096 @default.
- W3090295587 hasRelatedWork W9861414 @default.
- W3090295587 isParatext "false" @default.
- W3090295587 isRetracted "false" @default.
- W3090295587 magId "3090295587" @default.
- W3090295587 workType "article" @default.