Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090302285> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3090302285 endingPage "133" @default.
- W3090302285 startingPage "124" @default.
- W3090302285 abstract "Significant memory concern (SMC) is the earlier stage of mild cognitive impairment (MCI), and its early treatment is quite vital to delay further disease-induced deterioration. To predict the deterioration, graph convolution network (GCN) with current adjacency matrix still suffers from limited prediction performance due to their subtle difference and obscure features. For this reason, we propose a similarity-aware adaptive calibrated GCN (SAC-GCN), which can combine functional and structural information to predict SMC and MCI. We utilize an adaptive calibration mechanism to construct a data-driven adjacency matrix. Specifically, we first design a similarity-aware graph using different receptive fields to consider the disease statuses. Namely, the labeled subjects are only connected with those subjects who have the same status in the convolution operation. Then we compute more accurate weights in graph edges from functional and structural scores. Current edge weights are used to construct an initial graph and pre-train the GCN. Based on the pre-trained GCN, the differences between scores replace the traditional correlation distances to evaluate edge weights. Lastly, we devise a calibration technique to fuse functional and structural information for edge weighting. The proposed method is tested on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. The experimental results demonstrate that our proposed method is effective to predict disease-induced deterioration and superior over other related algorithm." @default.
- W3090302285 created "2020-10-08" @default.
- W3090302285 creator A5001212991 @default.
- W3090302285 creator A5046543349 @default.
- W3090302285 creator A5048459031 @default.
- W3090302285 creator A5049192404 @default.
- W3090302285 creator A5062039997 @default.
- W3090302285 creator A5074063024 @default.
- W3090302285 date "2020-01-01" @default.
- W3090302285 modified "2023-10-16" @default.
- W3090302285 title "Integrating Similarity Awareness and Adaptive Calibration in Graph Convolution Network to Predict Disease" @default.
- W3090302285 cites W1944724818 @default.
- W3090302285 cites W1981245483 @default.
- W3090302285 cites W2007369824 @default.
- W3090302285 cites W2014418634 @default.
- W3090302285 cites W2058046532 @default.
- W3090302285 cites W2090134434 @default.
- W3090302285 cites W2583114732 @default.
- W3090302285 cites W2770136486 @default.
- W3090302285 cites W2779020697 @default.
- W3090302285 cites W2806489700 @default.
- W3090302285 cites W2900790612 @default.
- W3090302285 cites W2901480059 @default.
- W3090302285 cites W2904909998 @default.
- W3090302285 cites W2921730678 @default.
- W3090302285 cites W2943850976 @default.
- W3090302285 cites W2979752341 @default.
- W3090302285 cites W3000118808 @default.
- W3090302285 cites W829552687 @default.
- W3090302285 doi "https://doi.org/10.1007/978-3-030-59728-3_13" @default.
- W3090302285 hasPublicationYear "2020" @default.
- W3090302285 type Work @default.
- W3090302285 sameAs 3090302285 @default.
- W3090302285 citedByCount "6" @default.
- W3090302285 countsByYear W30903022852021 @default.
- W3090302285 countsByYear W30903022852022 @default.
- W3090302285 countsByYear W30903022852023 @default.
- W3090302285 crossrefType "book-chapter" @default.
- W3090302285 hasAuthorship W3090302285A5001212991 @default.
- W3090302285 hasAuthorship W3090302285A5046543349 @default.
- W3090302285 hasAuthorship W3090302285A5048459031 @default.
- W3090302285 hasAuthorship W3090302285A5049192404 @default.
- W3090302285 hasAuthorship W3090302285A5062039997 @default.
- W3090302285 hasAuthorship W3090302285A5074063024 @default.
- W3090302285 hasConcept C103278499 @default.
- W3090302285 hasConcept C105795698 @default.
- W3090302285 hasConcept C115961682 @default.
- W3090302285 hasConcept C132525143 @default.
- W3090302285 hasConcept C154945302 @default.
- W3090302285 hasConcept C165838908 @default.
- W3090302285 hasConcept C33923547 @default.
- W3090302285 hasConcept C41008148 @default.
- W3090302285 hasConcept C45347329 @default.
- W3090302285 hasConcept C50644808 @default.
- W3090302285 hasConcept C80444323 @default.
- W3090302285 hasConceptScore W3090302285C103278499 @default.
- W3090302285 hasConceptScore W3090302285C105795698 @default.
- W3090302285 hasConceptScore W3090302285C115961682 @default.
- W3090302285 hasConceptScore W3090302285C132525143 @default.
- W3090302285 hasConceptScore W3090302285C154945302 @default.
- W3090302285 hasConceptScore W3090302285C165838908 @default.
- W3090302285 hasConceptScore W3090302285C33923547 @default.
- W3090302285 hasConceptScore W3090302285C41008148 @default.
- W3090302285 hasConceptScore W3090302285C45347329 @default.
- W3090302285 hasConceptScore W3090302285C50644808 @default.
- W3090302285 hasConceptScore W3090302285C80444323 @default.
- W3090302285 hasLocation W30903022851 @default.
- W3090302285 hasOpenAccess W3090302285 @default.
- W3090302285 hasPrimaryLocation W30903022851 @default.
- W3090302285 hasRelatedWork W2014478174 @default.
- W3090302285 hasRelatedWork W2043057586 @default.
- W3090302285 hasRelatedWork W2071794268 @default.
- W3090302285 hasRelatedWork W2073495840 @default.
- W3090302285 hasRelatedWork W2334093999 @default.
- W3090302285 hasRelatedWork W2594599357 @default.
- W3090302285 hasRelatedWork W2937560759 @default.
- W3090302285 hasRelatedWork W3105923645 @default.
- W3090302285 hasRelatedWork W3107474891 @default.
- W3090302285 hasRelatedWork W3134991707 @default.
- W3090302285 isParatext "false" @default.
- W3090302285 isRetracted "false" @default.
- W3090302285 magId "3090302285" @default.
- W3090302285 workType "book-chapter" @default.