Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090317860> ?p ?o ?g. }
- W3090317860 abstract "Multi-target regression is concerned with the prediction of multiple continuous target variables using a shared set of predictors. Two key challenges in multi-target regression are: (a) modelling target dependencies and (b) scalability to large output spaces. In this paper, a new multi-target regression method is proposed that tries to jointly address these challenges via a novel problem transformation approach. The proposed method, called MRQ, is based on the idea of quantizing the output space in order to transform the multiple continuous targets into one or more discrete ones. Learning on the transformed output space naturally enables modeling of target dependencies while the quantization strategy can be flexibly parameterized to control the trade-off between prediction accuracy and computational efficiency. Experiments on a large collection of benchmark datasets show that MRQ is both highly scalable and also competitive with the state-of-the-art in terms of accuracy. In particular, an ensemble version of MRQ obtains the best overall accuracy, while being an order of magnitude faster than the runner up method." @default.
- W3090317860 created "2020-10-08" @default.
- W3090317860 creator A5009239738 @default.
- W3090317860 creator A5066340205 @default.
- W3090317860 creator A5067205810 @default.
- W3090317860 date "2020-07-01" @default.
- W3090317860 modified "2023-09-23" @default.
- W3090317860 title "Multi-target regression via output space quantization" @default.
- W3090317860 cites W1495479660 @default.
- W3090317860 cites W1497745584 @default.
- W3090317860 cites W1549710828 @default.
- W3090317860 cites W1565746575 @default.
- W3090317860 cites W1769664844 @default.
- W3090317860 cites W1843031944 @default.
- W3090317860 cites W1914247575 @default.
- W3090317860 cites W1958976700 @default.
- W3090317860 cites W1977182282 @default.
- W3090317860 cites W1986159170 @default.
- W3090317860 cites W1999954155 @default.
- W3090317860 cites W2038381734 @default.
- W3090317860 cites W2040649920 @default.
- W3090317860 cites W2049038150 @default.
- W3090317860 cites W2054121219 @default.
- W3090317860 cites W2065180801 @default.
- W3090317860 cites W2097334502 @default.
- W3090317860 cites W2104606180 @default.
- W3090317860 cites W2114315281 @default.
- W3090317860 cites W2117130368 @default.
- W3090317860 cites W2118099552 @default.
- W3090317860 cites W2124509324 @default.
- W3090317860 cites W2137107481 @default.
- W3090317860 cites W2138290126 @default.
- W3090317860 cites W2143149208 @default.
- W3090317860 cites W2144807460 @default.
- W3090317860 cites W2154095747 @default.
- W3090317860 cites W2157024002 @default.
- W3090317860 cites W2159514083 @default.
- W3090317860 cites W2161824996 @default.
- W3090317860 cites W2168939893 @default.
- W3090317860 cites W2520799877 @default.
- W3090317860 cites W2891165828 @default.
- W3090317860 cites W2912934387 @default.
- W3090317860 cites W2913340405 @default.
- W3090317860 cites W3122943284 @default.
- W3090317860 cites W3124484778 @default.
- W3090317860 cites W55768394 @default.
- W3090317860 cites W2970022446 @default.
- W3090317860 doi "https://doi.org/10.1109/ijcnn48605.2020.9206984" @default.
- W3090317860 hasPublicationYear "2020" @default.
- W3090317860 type Work @default.
- W3090317860 sameAs 3090317860 @default.
- W3090317860 citedByCount "2" @default.
- W3090317860 countsByYear W30903178602021 @default.
- W3090317860 crossrefType "proceedings-article" @default.
- W3090317860 hasAuthorship W3090317860A5009239738 @default.
- W3090317860 hasAuthorship W3090317860A5066340205 @default.
- W3090317860 hasAuthorship W3090317860A5067205810 @default.
- W3090317860 hasBestOaLocation W30903178602 @default.
- W3090317860 hasConcept C104317684 @default.
- W3090317860 hasConcept C105795698 @default.
- W3090317860 hasConcept C11413529 @default.
- W3090317860 hasConcept C119857082 @default.
- W3090317860 hasConcept C124101348 @default.
- W3090317860 hasConcept C13280743 @default.
- W3090317860 hasConcept C154945302 @default.
- W3090317860 hasConcept C165464430 @default.
- W3090317860 hasConcept C177264268 @default.
- W3090317860 hasConcept C185592680 @default.
- W3090317860 hasConcept C185798385 @default.
- W3090317860 hasConcept C199360897 @default.
- W3090317860 hasConcept C204241405 @default.
- W3090317860 hasConcept C205649164 @default.
- W3090317860 hasConcept C28855332 @default.
- W3090317860 hasConcept C33923547 @default.
- W3090317860 hasConcept C41008148 @default.
- W3090317860 hasConcept C48044578 @default.
- W3090317860 hasConcept C55493867 @default.
- W3090317860 hasConcept C77088390 @default.
- W3090317860 hasConcept C83546350 @default.
- W3090317860 hasConceptScore W3090317860C104317684 @default.
- W3090317860 hasConceptScore W3090317860C105795698 @default.
- W3090317860 hasConceptScore W3090317860C11413529 @default.
- W3090317860 hasConceptScore W3090317860C119857082 @default.
- W3090317860 hasConceptScore W3090317860C124101348 @default.
- W3090317860 hasConceptScore W3090317860C13280743 @default.
- W3090317860 hasConceptScore W3090317860C154945302 @default.
- W3090317860 hasConceptScore W3090317860C165464430 @default.
- W3090317860 hasConceptScore W3090317860C177264268 @default.
- W3090317860 hasConceptScore W3090317860C185592680 @default.
- W3090317860 hasConceptScore W3090317860C185798385 @default.
- W3090317860 hasConceptScore W3090317860C199360897 @default.
- W3090317860 hasConceptScore W3090317860C204241405 @default.
- W3090317860 hasConceptScore W3090317860C205649164 @default.
- W3090317860 hasConceptScore W3090317860C28855332 @default.
- W3090317860 hasConceptScore W3090317860C33923547 @default.
- W3090317860 hasConceptScore W3090317860C41008148 @default.
- W3090317860 hasConceptScore W3090317860C48044578 @default.
- W3090317860 hasConceptScore W3090317860C55493867 @default.
- W3090317860 hasConceptScore W3090317860C77088390 @default.
- W3090317860 hasConceptScore W3090317860C83546350 @default.