Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090335265> ?p ?o ?g. }
- W3090335265 endingPage "6550" @default.
- W3090335265 startingPage "6540" @default.
- W3090335265 abstract "Purpose To develop a biological dose prediction model considering tissue bio‐reactions in addition to patient anatomy for achieving a more comprehensive evaluation of tumor control and promoting the automatic planning of bulky lung cancer. Methods A database containing images and partial stereotactic ablation boost radiotherapy (P‐SABR) plans of 94 bulky lung cancer patients was studied. Patient‐specific parameters of gross tumor boost volume (GTVb), planning gross target volume (PGTV), and identified organs at risk (OARs) were extracted via Numpy and simple ITK. The original dose and structure maps for P‐SABR patients were resampled to have a voxel resolution of 3.9 × 3.9 × 3 mm 3 . Biological equivalent dose (BED) distributions were reprogrammed based on physical dose volumes. A developed deep learning architecture, Nestnet, was adopted as the training framework. We utilized two approaches for data organization to correlate the structures and BED: (a) BED programming before training model (B‐Nestnet); (b) BED programming after the training process (D‐B Nestnet). The early‐stop mechanism was adopted on the validation set to avoid overfitting. The evaluation criteria of predictive accuracy contain the minimum BED of GTVb and PGTV, the maximum and the mean BED of all targets, BED‐volume metrics. For comparison, we also used the original Unet for BED prediction. The absolute differences were statistically analyzed with the paired‐samples t test. Results The statistical outcomes demonstrate that D‐B Nestnet model predicts biological dose distributions accurately. The average absolute biases of [max, mean] BED for GTVb, PGTV are [2.1%, 3.3%] and [2.1%, 4.7%], respectively. Averaging across most of OARs, the D‐B Nestnet model is capable of predicting the errors of the max and mean BED within 6.3% and 6.1%, respectively. While the compared models performed worse with averaged max and mean BED prediction errors surpassing 10% on some specific OARs. Conclusions The study developed a D‐B Nestnet model capable of predicting BED distribution accurately for bulky lung cancer patients in P‐SABR. The predicted BED map enables a quick intuitive evaluation of tumor ablation, modification of the ablation range to improve BED of tumor targets, and quality assessment. It represents a major step forward toward automated P‐SABR planning on bulky lung cancer in real clinical practice." @default.
- W3090335265 created "2020-10-08" @default.
- W3090335265 creator A5004255372 @default.
- W3090335265 creator A5016471078 @default.
- W3090335265 creator A5019158636 @default.
- W3090335265 creator A5032308036 @default.
- W3090335265 creator A5036045996 @default.
- W3090335265 creator A5044367029 @default.
- W3090335265 creator A5047730792 @default.
- W3090335265 creator A5064839560 @default.
- W3090335265 creator A5067125100 @default.
- W3090335265 creator A5087947104 @default.
- W3090335265 creator A5089330380 @default.
- W3090335265 date "2020-10-26" @default.
- W3090335265 modified "2023-10-01" @default.
- W3090335265 title "Using deep learning to model the biological dose prediction on bulky lung cancer patients of partial stereotactic ablation radiotherapy" @default.
- W3090335265 cites W1530528095 @default.
- W3090335265 cites W1901129140 @default.
- W3090335265 cites W1971747664 @default.
- W3090335265 cites W2008813541 @default.
- W3090335265 cites W2042355481 @default.
- W3090335265 cites W2058892751 @default.
- W3090335265 cites W2070411437 @default.
- W3090335265 cites W2071098381 @default.
- W3090335265 cites W2076137462 @default.
- W3090335265 cites W2078998933 @default.
- W3090335265 cites W2080068518 @default.
- W3090335265 cites W2092014242 @default.
- W3090335265 cites W2093742457 @default.
- W3090335265 cites W2094922469 @default.
- W3090335265 cites W2096921397 @default.
- W3090335265 cites W2098354451 @default.
- W3090335265 cites W2100699934 @default.
- W3090335265 cites W2105929868 @default.
- W3090335265 cites W2113849825 @default.
- W3090335265 cites W2127426304 @default.
- W3090335265 cites W2149669698 @default.
- W3090335265 cites W2155070439 @default.
- W3090335265 cites W2157260942 @default.
- W3090335265 cites W2161797998 @default.
- W3090335265 cites W2165536859 @default.
- W3090335265 cites W2269376304 @default.
- W3090335265 cites W2272720052 @default.
- W3090335265 cites W2509877404 @default.
- W3090335265 cites W2559911131 @default.
- W3090335265 cites W2786147899 @default.
- W3090335265 cites W2788193639 @default.
- W3090335265 cites W2801895932 @default.
- W3090335265 cites W2889627776 @default.
- W3090335265 cites W2898757811 @default.
- W3090335265 cites W2902472343 @default.
- W3090335265 cites W2903870823 @default.
- W3090335265 cites W2904732647 @default.
- W3090335265 cites W2906785117 @default.
- W3090335265 cites W2914877953 @default.
- W3090335265 cites W2918327883 @default.
- W3090335265 cites W2924772801 @default.
- W3090335265 cites W2996290406 @default.
- W3090335265 doi "https://doi.org/10.1002/mp.14518" @default.
- W3090335265 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33012059" @default.
- W3090335265 hasPublicationYear "2020" @default.
- W3090335265 type Work @default.
- W3090335265 sameAs 3090335265 @default.
- W3090335265 citedByCount "4" @default.
- W3090335265 countsByYear W30903352652021 @default.
- W3090335265 countsByYear W30903352652022 @default.
- W3090335265 countsByYear W30903352652023 @default.
- W3090335265 crossrefType "journal-article" @default.
- W3090335265 hasAuthorship W3090335265A5004255372 @default.
- W3090335265 hasAuthorship W3090335265A5016471078 @default.
- W3090335265 hasAuthorship W3090335265A5019158636 @default.
- W3090335265 hasAuthorship W3090335265A5032308036 @default.
- W3090335265 hasAuthorship W3090335265A5036045996 @default.
- W3090335265 hasAuthorship W3090335265A5044367029 @default.
- W3090335265 hasAuthorship W3090335265A5047730792 @default.
- W3090335265 hasAuthorship W3090335265A5064839560 @default.
- W3090335265 hasAuthorship W3090335265A5067125100 @default.
- W3090335265 hasAuthorship W3090335265A5087947104 @default.
- W3090335265 hasAuthorship W3090335265A5089330380 @default.
- W3090335265 hasConcept C126322002 @default.
- W3090335265 hasConcept C126838900 @default.
- W3090335265 hasConcept C149782125 @default.
- W3090335265 hasConcept C154945302 @default.
- W3090335265 hasConcept C187625094 @default.
- W3090335265 hasConcept C201645570 @default.
- W3090335265 hasConcept C22019652 @default.
- W3090335265 hasConcept C2778902805 @default.
- W3090335265 hasConcept C2780387249 @default.
- W3090335265 hasConcept C2989005 @default.
- W3090335265 hasConcept C33923547 @default.
- W3090335265 hasConcept C41008148 @default.
- W3090335265 hasConcept C50644808 @default.
- W3090335265 hasConcept C509974204 @default.
- W3090335265 hasConcept C71924100 @default.
- W3090335265 hasConcept C75088862 @default.
- W3090335265 hasConcept C85393063 @default.
- W3090335265 hasConcept C91602232 @default.
- W3090335265 hasConceptScore W3090335265C126322002 @default.