Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090346144> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3090346144 endingPage "643" @default.
- W3090346144 startingPage "632" @default.
- W3090346144 abstract "Background: Deep learning (DL) is an Artificial neural network-driven framework with multiple levels of representation for which non-linear modules combined in such a way that the levels of representation can be enhanced from lower to a much abstract level. Though DL is used widely in almost every field, it has largely brought a breakthrough in biological sciences as it is used in disease diagnosis and clinical trials. DL can be clubbed with machine learning, but at times both are used individually as well. DL seems to be a better platform than machine learning as the former does not require an intermediate feature extraction and works well with larger datasets. DL is one of the most discussed fields among scientists and researchers these days for diagnosing and solving various biological problems. However, deep learning models need some improvisation and experimental validations to be more productive. Objective: To review the available DL models and datasets that are used in disease diagnosis. Methods: Available DL models and their applications in disease diagnosis were reviewed discussed and tabulated. Types of datasets and some of the popular disease-related data sources for DL were highlighted. Results: We have analyzed the frequently used DL methods, data types, and discussed some of the recent deep learning models used for solving different biological problems. Conclusion: The review presents useful insights about DL methods, data types, and selection of DL models for the disease diagnosis." @default.
- W3090346144 created "2020-10-08" @default.
- W3090346144 creator A5001261978 @default.
- W3090346144 creator A5033740307 @default.
- W3090346144 creator A5066268521 @default.
- W3090346144 date "2021-08-11" @default.
- W3090346144 modified "2023-09-26" @default.
- W3090346144 title "Deep Learning in Disease Diagnosis: Models and Datasets" @default.
- W3090346144 doi "https://doi.org/10.2174/1574893615999201002124021" @default.
- W3090346144 hasPublicationYear "2021" @default.
- W3090346144 type Work @default.
- W3090346144 sameAs 3090346144 @default.
- W3090346144 citedByCount "4" @default.
- W3090346144 countsByYear W30903461442022 @default.
- W3090346144 countsByYear W30903461442023 @default.
- W3090346144 crossrefType "journal-article" @default.
- W3090346144 hasAuthorship W3090346144A5001261978 @default.
- W3090346144 hasAuthorship W3090346144A5033740307 @default.
- W3090346144 hasAuthorship W3090346144A5066268521 @default.
- W3090346144 hasConcept C108583219 @default.
- W3090346144 hasConcept C116409475 @default.
- W3090346144 hasConcept C119857082 @default.
- W3090346144 hasConcept C138885662 @default.
- W3090346144 hasConcept C142724271 @default.
- W3090346144 hasConcept C148483581 @default.
- W3090346144 hasConcept C154945302 @default.
- W3090346144 hasConcept C17744445 @default.
- W3090346144 hasConcept C199539241 @default.
- W3090346144 hasConcept C202444582 @default.
- W3090346144 hasConcept C2776359362 @default.
- W3090346144 hasConcept C2776401178 @default.
- W3090346144 hasConcept C2779134260 @default.
- W3090346144 hasConcept C33923547 @default.
- W3090346144 hasConcept C41008148 @default.
- W3090346144 hasConcept C41895202 @default.
- W3090346144 hasConcept C50644808 @default.
- W3090346144 hasConcept C71924100 @default.
- W3090346144 hasConcept C94625758 @default.
- W3090346144 hasConcept C9652623 @default.
- W3090346144 hasConceptScore W3090346144C108583219 @default.
- W3090346144 hasConceptScore W3090346144C116409475 @default.
- W3090346144 hasConceptScore W3090346144C119857082 @default.
- W3090346144 hasConceptScore W3090346144C138885662 @default.
- W3090346144 hasConceptScore W3090346144C142724271 @default.
- W3090346144 hasConceptScore W3090346144C148483581 @default.
- W3090346144 hasConceptScore W3090346144C154945302 @default.
- W3090346144 hasConceptScore W3090346144C17744445 @default.
- W3090346144 hasConceptScore W3090346144C199539241 @default.
- W3090346144 hasConceptScore W3090346144C202444582 @default.
- W3090346144 hasConceptScore W3090346144C2776359362 @default.
- W3090346144 hasConceptScore W3090346144C2776401178 @default.
- W3090346144 hasConceptScore W3090346144C2779134260 @default.
- W3090346144 hasConceptScore W3090346144C33923547 @default.
- W3090346144 hasConceptScore W3090346144C41008148 @default.
- W3090346144 hasConceptScore W3090346144C41895202 @default.
- W3090346144 hasConceptScore W3090346144C50644808 @default.
- W3090346144 hasConceptScore W3090346144C71924100 @default.
- W3090346144 hasConceptScore W3090346144C94625758 @default.
- W3090346144 hasConceptScore W3090346144C9652623 @default.
- W3090346144 hasIssue "5" @default.
- W3090346144 hasLocation W30903461441 @default.
- W3090346144 hasOpenAccess W3090346144 @default.
- W3090346144 hasPrimaryLocation W30903461441 @default.
- W3090346144 hasRelatedWork W3014300295 @default.
- W3090346144 hasRelatedWork W3164822677 @default.
- W3090346144 hasRelatedWork W4223943233 @default.
- W3090346144 hasRelatedWork W4225161397 @default.
- W3090346144 hasRelatedWork W4250304930 @default.
- W3090346144 hasRelatedWork W4312200629 @default.
- W3090346144 hasRelatedWork W4360585206 @default.
- W3090346144 hasRelatedWork W4364306694 @default.
- W3090346144 hasRelatedWork W4380075502 @default.
- W3090346144 hasRelatedWork W4380086463 @default.
- W3090346144 hasVolume "16" @default.
- W3090346144 isParatext "false" @default.
- W3090346144 isRetracted "false" @default.
- W3090346144 magId "3090346144" @default.
- W3090346144 workType "article" @default.