Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090385165> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3090385165 abstract "In cognitive science and human-computer interaction, automatic human emotion recognition using physiological stimuli is a key technology. This research considers classification of negative emotions using EEG signals in response to emotional clips. This paper introduces a long short term memory deep learning (LSTM) network to recognize emotions using EEG signals. The primary goal of this approach is to assess the classification performance of the LSTM model for classifying emotions. The secondary goal is to assess the human behavior of different age groups and genders. We have compared the performance of Multilayer Perceptron (MLP), K-nearest neighbors (KNN), Support Vector Machine (SVM), Deep Belief Network based SVM (DBN-SVM), and LSTM based deep learning model for classification of negative emotions using brain signals. The analysis shows that for four class of negative emotion recognition LSTM based deep learning model provides classification accuracy as 81.63%, 84.64%, 89.73%, and 92.84% for 50-50, 60-40, 70-30, and 10-fold cross-validation. Generalizability and reliability of this approach is evaluated by applying our approach to publicly available EEG dataset DEAP and SEED. In compliance with the self-reported feelings, brain signals of 26-35 years of age group provided the highest emotional identification. Among genders, females are more emotionally active as compared to males." @default.
- W3090385165 created "2020-10-08" @default.
- W3090385165 creator A5003304299 @default.
- W3090385165 creator A5039186971 @default.
- W3090385165 creator A5040631655 @default.
- W3090385165 creator A5057104617 @default.
- W3090385165 creator A5074206631 @default.
- W3090385165 date "2020-07-01" @default.
- W3090385165 modified "2023-09-30" @default.
- W3090385165 title "A Long Short Term Memory Deep Learning Network for the Classification of Negative Emotions Using EEG Signals" @default.
- W3090385165 cites W1941755770 @default.
- W3090385165 cites W1947251450 @default.
- W3090385165 cites W1980121234 @default.
- W3090385165 cites W1988484949 @default.
- W3090385165 cites W2002055708 @default.
- W3090385165 cites W2011170389 @default.
- W3090385165 cites W2064044177 @default.
- W3090385165 cites W2132889650 @default.
- W3090385165 cites W2167557160 @default.
- W3090385165 cites W2507306959 @default.
- W3090385165 cites W2804824909 @default.
- W3090385165 cites W2886300652 @default.
- W3090385165 cites W2891321141 @default.
- W3090385165 cites W2995047828 @default.
- W3090385165 cites W3010451134 @default.
- W3090385165 cites W3010483354 @default.
- W3090385165 doi "https://doi.org/10.1109/ijcnn48605.2020.9207280" @default.
- W3090385165 hasPublicationYear "2020" @default.
- W3090385165 type Work @default.
- W3090385165 sameAs 3090385165 @default.
- W3090385165 citedByCount "23" @default.
- W3090385165 countsByYear W30903851652021 @default.
- W3090385165 countsByYear W30903851652022 @default.
- W3090385165 countsByYear W30903851652023 @default.
- W3090385165 crossrefType "proceedings-article" @default.
- W3090385165 hasAuthorship W3090385165A5003304299 @default.
- W3090385165 hasAuthorship W3090385165A5039186971 @default.
- W3090385165 hasAuthorship W3090385165A5040631655 @default.
- W3090385165 hasAuthorship W3090385165A5057104617 @default.
- W3090385165 hasAuthorship W3090385165A5074206631 @default.
- W3090385165 hasConcept C108583219 @default.
- W3090385165 hasConcept C119857082 @default.
- W3090385165 hasConcept C12267149 @default.
- W3090385165 hasConcept C138496976 @default.
- W3090385165 hasConcept C153180895 @default.
- W3090385165 hasConcept C154945302 @default.
- W3090385165 hasConcept C15744967 @default.
- W3090385165 hasConcept C169760540 @default.
- W3090385165 hasConcept C27158222 @default.
- W3090385165 hasConcept C28490314 @default.
- W3090385165 hasConcept C41008148 @default.
- W3090385165 hasConcept C522805319 @default.
- W3090385165 hasConcept C52622490 @default.
- W3090385165 hasConceptScore W3090385165C108583219 @default.
- W3090385165 hasConceptScore W3090385165C119857082 @default.
- W3090385165 hasConceptScore W3090385165C12267149 @default.
- W3090385165 hasConceptScore W3090385165C138496976 @default.
- W3090385165 hasConceptScore W3090385165C153180895 @default.
- W3090385165 hasConceptScore W3090385165C154945302 @default.
- W3090385165 hasConceptScore W3090385165C15744967 @default.
- W3090385165 hasConceptScore W3090385165C169760540 @default.
- W3090385165 hasConceptScore W3090385165C27158222 @default.
- W3090385165 hasConceptScore W3090385165C28490314 @default.
- W3090385165 hasConceptScore W3090385165C41008148 @default.
- W3090385165 hasConceptScore W3090385165C522805319 @default.
- W3090385165 hasConceptScore W3090385165C52622490 @default.
- W3090385165 hasLocation W30903851651 @default.
- W3090385165 hasOpenAccess W3090385165 @default.
- W3090385165 hasPrimaryLocation W30903851651 @default.
- W3090385165 hasRelatedWork W2320736787 @default.
- W3090385165 hasRelatedWork W2336974148 @default.
- W3090385165 hasRelatedWork W2946016983 @default.
- W3090385165 hasRelatedWork W4223943233 @default.
- W3090385165 hasRelatedWork W4312200629 @default.
- W3090385165 hasRelatedWork W4360585206 @default.
- W3090385165 hasRelatedWork W4364306694 @default.
- W3090385165 hasRelatedWork W4380075502 @default.
- W3090385165 hasRelatedWork W4380086463 @default.
- W3090385165 hasRelatedWork W2345184372 @default.
- W3090385165 isParatext "false" @default.
- W3090385165 isRetracted "false" @default.
- W3090385165 magId "3090385165" @default.
- W3090385165 workType "article" @default.