Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090413265> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3090413265 abstract "Advanced object detectors based on Convolutional Neural Networks (CNNs) offer high detection rates for many application scenarios but only within their respective training, validation and test data. Recent studies show that such methods provide a limited generalization ability for unknown data, even for small image modifications including a limited scale invariance. Reliable person detection with aerial robots (Unmanned Aerial Vehicles, UAVs) is an essential task to fulfill high security requirements or to support robot control, communication, and human-robot interaction. Particularly in an agricultural context, persons need to be detected from a long distance and a high altitude to allow the UAV an adequate and timely response. While UAVs are able to produce high resolution images that enable the detection of persons from a longer distance, typical CNN input layer sizes are comparably small. The inevitable scaling of images to match the input-layer size can lead to a further reduction in person sizes. We investigate the reliability of different YOLOv3 architectures for person detection in regard to those input-scaling effects. The popular VisDrone data set with its varying image resolutions and relatively small depiction of humans is used as well as high resolution UAV images from an agricultural data set. To overcome the scaling problem, an algorithm is presented for segmenting high resolution images in overlapping tiles that match the input-layer size. The number and overlap of the tiles are dynamically determined based on the image resolution. It is shown that the detection rate of very small persons in high resolution images can be improved using this tiling approach." @default.
- W3090413265 created "2020-10-08" @default.
- W3090413265 creator A5002596904 @default.
- W3090413265 creator A5043545908 @default.
- W3090413265 creator A5085878355 @default.
- W3090413265 date "2020-01-01" @default.
- W3090413265 modified "2023-09-30" @default.
- W3090413265 title "Spatial Resolution-Independent CNN-Based Person Detection in Agricultural Image Data" @default.
- W3090413265 cites W1861492603 @default.
- W3090413265 cites W2245047273 @default.
- W3090413265 cites W2897898606 @default.
- W3090413265 cites W2963346150 @default.
- W3090413265 cites W2989611864 @default.
- W3090413265 cites W2995199175 @default.
- W3090413265 cites W3009131247 @default.
- W3090413265 cites W3012097225 @default.
- W3090413265 cites W3104159789 @default.
- W3090413265 cites W3125372245 @default.
- W3090413265 doi "https://doi.org/10.1007/978-3-030-60337-3_19" @default.
- W3090413265 hasPublicationYear "2020" @default.
- W3090413265 type Work @default.
- W3090413265 sameAs 3090413265 @default.
- W3090413265 citedByCount "1" @default.
- W3090413265 countsByYear W30904132652021 @default.
- W3090413265 crossrefType "book-chapter" @default.
- W3090413265 hasAuthorship W3090413265A5002596904 @default.
- W3090413265 hasAuthorship W3090413265A5043545908 @default.
- W3090413265 hasAuthorship W3090413265A5085878355 @default.
- W3090413265 hasConcept C108583219 @default.
- W3090413265 hasConcept C115961682 @default.
- W3090413265 hasConcept C151730666 @default.
- W3090413265 hasConcept C153180895 @default.
- W3090413265 hasConcept C154945302 @default.
- W3090413265 hasConcept C169903167 @default.
- W3090413265 hasConcept C177264268 @default.
- W3090413265 hasConcept C199360897 @default.
- W3090413265 hasConcept C205372480 @default.
- W3090413265 hasConcept C2776151529 @default.
- W3090413265 hasConcept C2776429412 @default.
- W3090413265 hasConcept C2779343474 @default.
- W3090413265 hasConcept C31972630 @default.
- W3090413265 hasConcept C41008148 @default.
- W3090413265 hasConcept C58489278 @default.
- W3090413265 hasConcept C81363708 @default.
- W3090413265 hasConcept C86803240 @default.
- W3090413265 hasConcept C90509273 @default.
- W3090413265 hasConceptScore W3090413265C108583219 @default.
- W3090413265 hasConceptScore W3090413265C115961682 @default.
- W3090413265 hasConceptScore W3090413265C151730666 @default.
- W3090413265 hasConceptScore W3090413265C153180895 @default.
- W3090413265 hasConceptScore W3090413265C154945302 @default.
- W3090413265 hasConceptScore W3090413265C169903167 @default.
- W3090413265 hasConceptScore W3090413265C177264268 @default.
- W3090413265 hasConceptScore W3090413265C199360897 @default.
- W3090413265 hasConceptScore W3090413265C205372480 @default.
- W3090413265 hasConceptScore W3090413265C2776151529 @default.
- W3090413265 hasConceptScore W3090413265C2776429412 @default.
- W3090413265 hasConceptScore W3090413265C2779343474 @default.
- W3090413265 hasConceptScore W3090413265C31972630 @default.
- W3090413265 hasConceptScore W3090413265C41008148 @default.
- W3090413265 hasConceptScore W3090413265C58489278 @default.
- W3090413265 hasConceptScore W3090413265C81363708 @default.
- W3090413265 hasConceptScore W3090413265C86803240 @default.
- W3090413265 hasConceptScore W3090413265C90509273 @default.
- W3090413265 hasLocation W30904132651 @default.
- W3090413265 hasOpenAccess W3090413265 @default.
- W3090413265 hasPrimaryLocation W30904132651 @default.
- W3090413265 hasRelatedWork W10295217 @default.
- W3090413265 hasRelatedWork W12793662 @default.
- W3090413265 hasRelatedWork W1284803 @default.
- W3090413265 hasRelatedWork W13929034 @default.
- W3090413265 hasRelatedWork W13986278 @default.
- W3090413265 hasRelatedWork W4771408 @default.
- W3090413265 hasRelatedWork W7746136 @default.
- W3090413265 hasRelatedWork W8261557 @default.
- W3090413265 hasRelatedWork W93427 @default.
- W3090413265 hasRelatedWork W9465030 @default.
- W3090413265 isParatext "false" @default.
- W3090413265 isRetracted "false" @default.
- W3090413265 magId "3090413265" @default.
- W3090413265 workType "book-chapter" @default.