Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090442146> ?p ?o ?g. }
- W3090442146 endingPage "8" @default.
- W3090442146 startingPage "1" @default.
- W3090442146 abstract "Background. Acute kidney injury (AKI) has long been recognized as a common and important complication of acute pancreatitis (AP). In the study, machine learning (ML) techniques were used to establish predictive models for AKI in AP patients during hospitalization. This is a retrospective review of prospectively collected data of AP patients admitted within one week after the onset of abdominal pain to our department from January 2014 to January 2019. Eighty patients developed AKI after admission (AKI group) and 254 patients did not (non-AKI group) in the hospital. With the provision of additional information such as demographic characteristics or laboratory data, support vector machine (SVM), random forest (RF), classification and regression tree (CART), and extreme gradient boosting (XGBoost) were used to build models of AKI prediction and compared to the predictive performance of the classic model using logistic regression (LR). XGBoost performed best in predicting AKI with an AUC of 91.93% among the machine learning models. The AUC of logistic regression analysis was 87.28%. Present findings suggest that compared to the classical logistic regression model, machine learning models using features that can be easily obtained at admission had a better performance in predicting AKI in the AP patients." @default.
- W3090442146 created "2020-10-08" @default.
- W3090442146 creator A5006327920 @default.
- W3090442146 creator A5025922159 @default.
- W3090442146 creator A5027800469 @default.
- W3090442146 creator A5032426675 @default.
- W3090442146 creator A5045819121 @default.
- W3090442146 creator A5059179466 @default.
- W3090442146 creator A5069391073 @default.
- W3090442146 creator A5072683188 @default.
- W3090442146 creator A5075499930 @default.
- W3090442146 creator A5078276416 @default.
- W3090442146 date "2020-09-28" @default.
- W3090442146 modified "2023-10-01" @default.
- W3090442146 title "Machine Learning Models of Acute Kidney Injury Prediction in Acute Pancreatitis Patients" @default.
- W3090442146 cites W146650310 @default.
- W3090442146 cites W1559998388 @default.
- W3090442146 cites W156279420 @default.
- W3090442146 cites W1678356000 @default.
- W3090442146 cites W1789016606 @default.
- W3090442146 cites W1898375826 @default.
- W3090442146 cites W1984079698 @default.
- W3090442146 cites W1991204554 @default.
- W3090442146 cites W2002974212 @default.
- W3090442146 cites W2006018425 @default.
- W3090442146 cites W2021013606 @default.
- W3090442146 cites W2040556325 @default.
- W3090442146 cites W2041055662 @default.
- W3090442146 cites W2056193118 @default.
- W3090442146 cites W2058331737 @default.
- W3090442146 cites W2067172877 @default.
- W3090442146 cites W2094065364 @default.
- W3090442146 cites W2105079478 @default.
- W3090442146 cites W2136279641 @default.
- W3090442146 cites W2139648891 @default.
- W3090442146 cites W2143387064 @default.
- W3090442146 cites W2145758369 @default.
- W3090442146 cites W2151909345 @default.
- W3090442146 cites W2159527913 @default.
- W3090442146 cites W2161136893 @default.
- W3090442146 cites W2330948083 @default.
- W3090442146 cites W2589897563 @default.
- W3090442146 cites W2800075989 @default.
- W3090442146 cites W2899909823 @default.
- W3090442146 cites W2900505374 @default.
- W3090442146 cites W2911964244 @default.
- W3090442146 cites W2919115771 @default.
- W3090442146 cites W2951577558 @default.
- W3090442146 cites W2979781132 @default.
- W3090442146 cites W2980612311 @default.
- W3090442146 cites W2986544402 @default.
- W3090442146 cites W3027466065 @default.
- W3090442146 cites W3035769840 @default.
- W3090442146 cites W3102476541 @default.
- W3090442146 cites W4236137412 @default.
- W3090442146 cites W4239190771 @default.
- W3090442146 cites W4239510810 @default.
- W3090442146 doi "https://doi.org/10.1155/2020/3431290" @default.
- W3090442146 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7542489" @default.
- W3090442146 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33061958" @default.
- W3090442146 hasPublicationYear "2020" @default.
- W3090442146 type Work @default.
- W3090442146 sameAs 3090442146 @default.
- W3090442146 citedByCount "24" @default.
- W3090442146 countsByYear W30904421462021 @default.
- W3090442146 countsByYear W30904421462022 @default.
- W3090442146 countsByYear W30904421462023 @default.
- W3090442146 crossrefType "journal-article" @default.
- W3090442146 hasAuthorship W3090442146A5006327920 @default.
- W3090442146 hasAuthorship W3090442146A5025922159 @default.
- W3090442146 hasAuthorship W3090442146A5027800469 @default.
- W3090442146 hasAuthorship W3090442146A5032426675 @default.
- W3090442146 hasAuthorship W3090442146A5045819121 @default.
- W3090442146 hasAuthorship W3090442146A5059179466 @default.
- W3090442146 hasAuthorship W3090442146A5069391073 @default.
- W3090442146 hasAuthorship W3090442146A5072683188 @default.
- W3090442146 hasAuthorship W3090442146A5075499930 @default.
- W3090442146 hasAuthorship W3090442146A5078276416 @default.
- W3090442146 hasBestOaLocation W30904421461 @default.
- W3090442146 hasConcept C119857082 @default.
- W3090442146 hasConcept C12267149 @default.
- W3090442146 hasConcept C126322002 @default.
- W3090442146 hasConcept C151956035 @default.
- W3090442146 hasConcept C154945302 @default.
- W3090442146 hasConcept C167135981 @default.
- W3090442146 hasConcept C169258074 @default.
- W3090442146 hasConcept C177713679 @default.
- W3090442146 hasConcept C194828623 @default.
- W3090442146 hasConcept C2775967933 @default.
- W3090442146 hasConcept C2776670229 @default.
- W3090442146 hasConcept C2780472472 @default.
- W3090442146 hasConcept C41008148 @default.
- W3090442146 hasConcept C71924100 @default.
- W3090442146 hasConcept C81182388 @default.
- W3090442146 hasConcept C84525736 @default.
- W3090442146 hasConceptScore W3090442146C119857082 @default.
- W3090442146 hasConceptScore W3090442146C12267149 @default.
- W3090442146 hasConceptScore W3090442146C126322002 @default.