Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090484054> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3090484054 abstract "In this paper a novel nonlinear logistic regression model based on a simplex basis function neural network is introduced that outputs probability of categorical variables in response to multiple predictors. It is shown that since a linear combination of the simplex basis functions can be represented as a piecewise linear model, the proposed nonlinear logistic regression model retains the main advantage of linear logistic regression model, that is, allowing probabilistic interpretation of the data sets from an identified model. The associated estimation problem is treated based on the principle of maximum likelihood by alternating over two algorithms; the iteratively reweighted least squares algorithm for linear parameters, while the simplex basis functions are fixed; then nonlinear parameters in each simplex basis function are adapted in turn based on gradient descent of the negative likelihood. The proposed algorithm is then extended to estimation of nonlinear multinomial logistic model. Numerical experiments are initially carried out to illustrate the advantage of nonlinear logistic regression model versus its linear counterpart in terms of approximation capability. Then we apply the proposed method for a difficult computer vision example of land-cover real data set" @default.
- W3090484054 created "2020-10-08" @default.
- W3090484054 creator A5015817857 @default.
- W3090484054 creator A5055599863 @default.
- W3090484054 creator A5056518170 @default.
- W3090484054 date "2020-07-01" @default.
- W3090484054 modified "2023-10-18" @default.
- W3090484054 title "Nonlinear Logistic Regression Model Based On Simplex Basis Function" @default.
- W3090484054 cites W1540007258 @default.
- W3090484054 cites W1554944419 @default.
- W3090484054 cites W1569512666 @default.
- W3090484054 cites W1602443498 @default.
- W3090484054 cites W1915759647 @default.
- W3090484054 cites W1977918122 @default.
- W3090484054 cites W1994669405 @default.
- W3090484054 cites W2002374079 @default.
- W3090484054 cites W2033217820 @default.
- W3090484054 cites W2045965468 @default.
- W3090484054 cites W2095690316 @default.
- W3090484054 cites W2112027492 @default.
- W3090484054 cites W2127785841 @default.
- W3090484054 cites W2129191766 @default.
- W3090484054 cites W2133227149 @default.
- W3090484054 cites W2142340904 @default.
- W3090484054 cites W2148603752 @default.
- W3090484054 cites W2555562547 @default.
- W3090484054 cites W2772294549 @default.
- W3090484054 doi "https://doi.org/10.1109/ijcnn48605.2020.9207064" @default.
- W3090484054 hasPublicationYear "2020" @default.
- W3090484054 type Work @default.
- W3090484054 sameAs 3090484054 @default.
- W3090484054 citedByCount "0" @default.
- W3090484054 crossrefType "proceedings-article" @default.
- W3090484054 hasAuthorship W3090484054A5015817857 @default.
- W3090484054 hasAuthorship W3090484054A5055599863 @default.
- W3090484054 hasAuthorship W3090484054A5056518170 @default.
- W3090484054 hasConcept C105795698 @default.
- W3090484054 hasConcept C11413529 @default.
- W3090484054 hasConcept C117568660 @default.
- W3090484054 hasConcept C120068334 @default.
- W3090484054 hasConcept C12426560 @default.
- W3090484054 hasConcept C126255220 @default.
- W3090484054 hasConcept C134306372 @default.
- W3090484054 hasConcept C151956035 @default.
- W3090484054 hasConcept C163175372 @default.
- W3090484054 hasConcept C2524010 @default.
- W3090484054 hasConcept C28826006 @default.
- W3090484054 hasConcept C32224588 @default.
- W3090484054 hasConcept C33923547 @default.
- W3090484054 hasConcept C41008148 @default.
- W3090484054 hasConcept C48921125 @default.
- W3090484054 hasConcept C5917680 @default.
- W3090484054 hasConcept C62438384 @default.
- W3090484054 hasConcept C70519679 @default.
- W3090484054 hasConceptScore W3090484054C105795698 @default.
- W3090484054 hasConceptScore W3090484054C11413529 @default.
- W3090484054 hasConceptScore W3090484054C117568660 @default.
- W3090484054 hasConceptScore W3090484054C120068334 @default.
- W3090484054 hasConceptScore W3090484054C12426560 @default.
- W3090484054 hasConceptScore W3090484054C126255220 @default.
- W3090484054 hasConceptScore W3090484054C134306372 @default.
- W3090484054 hasConceptScore W3090484054C151956035 @default.
- W3090484054 hasConceptScore W3090484054C163175372 @default.
- W3090484054 hasConceptScore W3090484054C2524010 @default.
- W3090484054 hasConceptScore W3090484054C28826006 @default.
- W3090484054 hasConceptScore W3090484054C32224588 @default.
- W3090484054 hasConceptScore W3090484054C33923547 @default.
- W3090484054 hasConceptScore W3090484054C41008148 @default.
- W3090484054 hasConceptScore W3090484054C48921125 @default.
- W3090484054 hasConceptScore W3090484054C5917680 @default.
- W3090484054 hasConceptScore W3090484054C62438384 @default.
- W3090484054 hasConceptScore W3090484054C70519679 @default.
- W3090484054 hasLocation W30904840541 @default.
- W3090484054 hasOpenAccess W3090484054 @default.
- W3090484054 hasPrimaryLocation W30904840541 @default.
- W3090484054 hasRelatedWork W10002721 @default.
- W3090484054 hasRelatedWork W1153249 @default.
- W3090484054 hasRelatedWork W11653831 @default.
- W3090484054 hasRelatedWork W11928021 @default.
- W3090484054 hasRelatedWork W12964577 @default.
- W3090484054 hasRelatedWork W12970021 @default.
- W3090484054 hasRelatedWork W2917275 @default.
- W3090484054 hasRelatedWork W3163542 @default.
- W3090484054 hasRelatedWork W6080821 @default.
- W3090484054 hasRelatedWork W7294314 @default.
- W3090484054 isParatext "false" @default.
- W3090484054 isRetracted "false" @default.
- W3090484054 magId "3090484054" @default.
- W3090484054 workType "article" @default.