Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090488045> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3090488045 abstract "<p>The assumption of spatial and temporal stationarity does not hold for many ecological and environmental processes. This is particularly the case for many soil processes like carbon sequestration, often driven by factors such as biological dynamics, climate change and anthropogenic influences. For better understanding and predicting such phenomena, we develop a Bayesian inference framework that combines the integrated nested Laplace approximation (INLA) with the stochastic partial differential equation approach (SPDE). We put focus on modeling complex temporal trends varying through space with an accurate assessment of uncertainties, and on spatio-temporal mapping of processes that are only partially observed.</p><p>We model observed data through a latent (i.e., unobserved) smooth process whose additive components are endowed with Gaussian process priors. We use the SPDE approach to implement flexible sparse-matrix approximations of the Mat&#233;rn covariance for spatial fields. The separate specification of the spatially varying linear trend allows us to conduct component-specific statistical inferences (range and variance estimates, standard errors, confidence bounds), and to provide maps to stakeholders for time-invariant spatial patterns, spatial patterns in slopes of time trends, and the associated uncertainties. For observed data following a Gaussian distribution, we add independent measurement errors, but more general response distributions of the data can be implemented. We also include in our model covariate information on parent material, climate and seasonality.</p><p>The INLA method and its implementation in the R-INLA library provide a rich toolbox for statistical space-time modelling while sidestepping typical convergence problems arising with simulation-based techniques using Markov Chain Monte&#8211;Carlo codes for large and complex hierarchical models such as ours. Uncertainties arising in model parameters and in pointwise spatio-temporal predictions are naturally captured in the posterior distributions computed through INLA using appropriate approximation techniques, and we can communicate on them through maps of various properties. Moreover, INLA also allows for direct simulation from the estimated posterior model, such that we can conduct statistical inferences on more complex functionals of the multivariate predictive distributions by analogy with MCMC frameworks.</p><p>Soil organic carbon is a major compartment of the global carbon cycle and small variations of its level can largely impact atmospheric CO<sub>2</sub> concentrations. In the context of global climate change, it is important to be able to quantify and explain spatial and temporal variability of SOC in order to forecast future changes. In this work, we used this approach to study possible trends in space and time of soil carbon stock of three agricultural fields in France. Fitted models reveal signi&#64257;cant temporal trends with strong spatial heterogeneity. The Mat&#233;rn model and SPDE approach provide a flexible framework with respect to field design.</p>" @default.
- W3090488045 created "2020-10-08" @default.
- W3090488045 creator A5031853525 @default.
- W3090488045 creator A5037512666 @default.
- W3090488045 creator A5065781401 @default.
- W3090488045 creator A5078885052 @default.
- W3090488045 creator A5084017348 @default.
- W3090488045 date "2020-03-23" @default.
- W3090488045 modified "2023-10-18" @default.
- W3090488045 title "Bayesian uncertainty quantification of spatio-temporal trends in soil organic carbon using INLA and SPDE" @default.
- W3090488045 doi "https://doi.org/10.5194/egusphere-egu2020-9154" @default.
- W3090488045 hasPublicationYear "2020" @default.
- W3090488045 type Work @default.
- W3090488045 sameAs 3090488045 @default.
- W3090488045 citedByCount "0" @default.
- W3090488045 crossrefType "posted-content" @default.
- W3090488045 hasAuthorship W3090488045A5031853525 @default.
- W3090488045 hasAuthorship W3090488045A5037512666 @default.
- W3090488045 hasAuthorship W3090488045A5065781401 @default.
- W3090488045 hasAuthorship W3090488045A5078885052 @default.
- W3090488045 hasAuthorship W3090488045A5084017348 @default.
- W3090488045 hasConcept C105795698 @default.
- W3090488045 hasConcept C107673813 @default.
- W3090488045 hasConcept C119043178 @default.
- W3090488045 hasConcept C147597530 @default.
- W3090488045 hasConcept C149782125 @default.
- W3090488045 hasConcept C154945302 @default.
- W3090488045 hasConcept C159985019 @default.
- W3090488045 hasConcept C160234255 @default.
- W3090488045 hasConcept C163716315 @default.
- W3090488045 hasConcept C177769412 @default.
- W3090488045 hasConcept C178650346 @default.
- W3090488045 hasConcept C185592680 @default.
- W3090488045 hasConcept C192562407 @default.
- W3090488045 hasConcept C204323151 @default.
- W3090488045 hasConcept C22243797 @default.
- W3090488045 hasConcept C2776214188 @default.
- W3090488045 hasConcept C33923547 @default.
- W3090488045 hasConcept C41008148 @default.
- W3090488045 hasConcept C61326573 @default.
- W3090488045 hasConceptScore W3090488045C105795698 @default.
- W3090488045 hasConceptScore W3090488045C107673813 @default.
- W3090488045 hasConceptScore W3090488045C119043178 @default.
- W3090488045 hasConceptScore W3090488045C147597530 @default.
- W3090488045 hasConceptScore W3090488045C149782125 @default.
- W3090488045 hasConceptScore W3090488045C154945302 @default.
- W3090488045 hasConceptScore W3090488045C159985019 @default.
- W3090488045 hasConceptScore W3090488045C160234255 @default.
- W3090488045 hasConceptScore W3090488045C163716315 @default.
- W3090488045 hasConceptScore W3090488045C177769412 @default.
- W3090488045 hasConceptScore W3090488045C178650346 @default.
- W3090488045 hasConceptScore W3090488045C185592680 @default.
- W3090488045 hasConceptScore W3090488045C192562407 @default.
- W3090488045 hasConceptScore W3090488045C204323151 @default.
- W3090488045 hasConceptScore W3090488045C22243797 @default.
- W3090488045 hasConceptScore W3090488045C2776214188 @default.
- W3090488045 hasConceptScore W3090488045C33923547 @default.
- W3090488045 hasConceptScore W3090488045C41008148 @default.
- W3090488045 hasConceptScore W3090488045C61326573 @default.
- W3090488045 hasLocation W30904880451 @default.
- W3090488045 hasOpenAccess W3090488045 @default.
- W3090488045 hasPrimaryLocation W30904880451 @default.
- W3090488045 hasRelatedWork W17990736 @default.
- W3090488045 hasRelatedWork W21458348 @default.
- W3090488045 hasRelatedWork W24702683 @default.
- W3090488045 hasRelatedWork W28591238 @default.
- W3090488045 hasRelatedWork W539935 @default.
- W3090488045 hasRelatedWork W5828521 @default.
- W3090488045 hasRelatedWork W6117 @default.
- W3090488045 hasRelatedWork W6551818 @default.
- W3090488045 hasRelatedWork W6787815 @default.
- W3090488045 hasRelatedWork W783304 @default.
- W3090488045 isParatext "false" @default.
- W3090488045 isRetracted "false" @default.
- W3090488045 magId "3090488045" @default.
- W3090488045 workType "article" @default.