Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090491025> ?p ?o ?g. }
- W3090491025 abstract "Abstract DNA/RNA motif mining is the foundation of gene function research. The DNA/RNA motif mining plays an extremely important role in identifying the DNA- or RNA-protein binding site, which helps to understand the mechanism of gene regulation and management. For the past few decades, researchers have been working on designing new efficient and accurate algorithms for mining motif. These algorithms can be roughly divided into two categories: the enumeration approach and the probabilistic method. In recent years, machine learning methods had made great progress, especially the algorithm represented by deep learning had achieved good performance. Existing deep learning methods in motif mining can be roughly divided into three types of models: convolutional neural network (CNN) based models, recurrent neural network (RNN) based models, and hybrid CNN–RNN based models. We introduce the application of deep learning in the field of motif mining in terms of data preprocessing, features of existing deep learning architectures and comparing the differences between the basic deep learning models. Through the analysis and comparison of existing deep learning methods, we found that the more complex models tend to perform better than simple ones when data are sufficient, and the current methods are relatively simple compared with other fields such as computer vision, language processing (NLP), computer games, etc. Therefore, it is necessary to conduct a summary in motif mining by deep learning, which can help researchers understand this field." @default.
- W3090491025 created "2020-10-08" @default.
- W3090491025 creator A5054096753 @default.
- W3090491025 creator A5062540383 @default.
- W3090491025 creator A5086358231 @default.
- W3090491025 creator A5089051425 @default.
- W3090491025 date "2020-10-02" @default.
- W3090491025 modified "2023-10-17" @default.
- W3090491025 title "A survey on deep learning in DNA/RNA motif mining" @default.
- W3090491025 cites W1019830208 @default.
- W3090491025 cites W1501531009 @default.
- W3090491025 cites W1951403192 @default.
- W3090491025 cites W1975924111 @default.
- W3090491025 cites W1978173716 @default.
- W3090491025 cites W1994067196 @default.
- W3090491025 cites W1997535872 @default.
- W3090491025 cites W2023178295 @default.
- W3090491025 cites W2032231928 @default.
- W3090491025 cites W2033201031 @default.
- W3090491025 cites W2038093918 @default.
- W3090491025 cites W2039991524 @default.
- W3090491025 cites W2043699100 @default.
- W3090491025 cites W2089783852 @default.
- W3090491025 cites W2097175728 @default.
- W3090491025 cites W2103447044 @default.
- W3090491025 cites W2105249891 @default.
- W3090491025 cites W2109459651 @default.
- W3090491025 cites W2110738405 @default.
- W3090491025 cites W2115577355 @default.
- W3090491025 cites W2115761267 @default.
- W3090491025 cites W2122732537 @default.
- W3090491025 cites W2126468786 @default.
- W3090491025 cites W2139617657 @default.
- W3090491025 cites W2140240158 @default.
- W3090491025 cites W2144015117 @default.
- W3090491025 cites W2148014281 @default.
- W3090491025 cites W2148219066 @default.
- W3090491025 cites W2149769193 @default.
- W3090491025 cites W2158266834 @default.
- W3090491025 cites W2166425625 @default.
- W3090491025 cites W2170226759 @default.
- W3090491025 cites W2198606573 @default.
- W3090491025 cites W2200283537 @default.
- W3090491025 cites W2209154915 @default.
- W3090491025 cites W2245239316 @default.
- W3090491025 cites W2247766769 @default.
- W3090491025 cites W2285139619 @default.
- W3090491025 cites W2336509392 @default.
- W3090491025 cites W2345512687 @default.
- W3090491025 cites W2346541400 @default.
- W3090491025 cites W2475602767 @default.
- W3090491025 cites W2502949459 @default.
- W3090491025 cites W2554078916 @default.
- W3090491025 cites W2571752074 @default.
- W3090491025 cites W2591130492 @default.
- W3090491025 cites W2592216350 @default.
- W3090491025 cites W2607045834 @default.
- W3090491025 cites W2614851820 @default.
- W3090491025 cites W2729704924 @default.
- W3090491025 cites W2730472814 @default.
- W3090491025 cites W2736280136 @default.
- W3090491025 cites W2762309767 @default.
- W3090491025 cites W2765651856 @default.
- W3090491025 cites W2766447205 @default.
- W3090491025 cites W2768956845 @default.
- W3090491025 cites W2789652838 @default.
- W3090491025 cites W2799487719 @default.
- W3090491025 cites W2896262061 @default.
- W3090491025 cites W2909854604 @default.
- W3090491025 cites W2918598256 @default.
- W3090491025 cites W2950354111 @default.
- W3090491025 cites W2950695830 @default.
- W3090491025 cites W2951748044 @default.
- W3090491025 cites W2960370523 @default.
- W3090491025 cites W2966369432 @default.
- W3090491025 cites W2971769670 @default.
- W3090491025 cites W3041434156 @default.
- W3090491025 doi "https://doi.org/10.1093/bib/bbaa229" @default.
- W3090491025 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8293829" @default.
- W3090491025 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33005921" @default.
- W3090491025 hasPublicationYear "2020" @default.
- W3090491025 type Work @default.
- W3090491025 sameAs 3090491025 @default.
- W3090491025 citedByCount "49" @default.
- W3090491025 countsByYear W30904910252021 @default.
- W3090491025 countsByYear W30904910252022 @default.
- W3090491025 countsByYear W30904910252023 @default.
- W3090491025 crossrefType "journal-article" @default.
- W3090491025 hasAuthorship W3090491025A5054096753 @default.
- W3090491025 hasAuthorship W3090491025A5062540383 @default.
- W3090491025 hasAuthorship W3090491025A5086358231 @default.
- W3090491025 hasAuthorship W3090491025A5089051425 @default.
- W3090491025 hasBestOaLocation W30904910251 @default.
- W3090491025 hasConcept C108583219 @default.
- W3090491025 hasConcept C119857082 @default.
- W3090491025 hasConcept C121332964 @default.
- W3090491025 hasConcept C147168706 @default.
- W3090491025 hasConcept C154945302 @default.
- W3090491025 hasConcept C24890656 @default.
- W3090491025 hasConcept C32276052 @default.