Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090503316> ?p ?o ?g. }
- W3090503316 abstract "Access to complete data in large scale networks is often infeasible. Therefore, the problem of missing data is a crucial and unavoidable issue in analysis and modeling of real-world social networks. However, most of the research on different aspects of social networks do not consider this limitation. One effective way to solve this problem is to recover the missing data as a pre-processing step. The present paper tries to infer the unobserved data from both diffusion network and network structure by learning a model from the partially observed data. We develop a probabilistic generative model called DiffStru to jointly discover the hidden links of network structure and the omitted diffusion activities. The interrelations among links of nodes and cascade processes are utilized in the proposed method via learning coupled low dimensional latent factors. In addition to inferring the unseen data, the learned latent factors may also help network classification problems such as community detection. Simulation results on synthetic and real-world datasets show the excellent performance of the proposed method in terms of link prediction and discovering the identity and infection time of invisible social behaviors." @default.
- W3090503316 created "2020-10-08" @default.
- W3090503316 creator A5039988490 @default.
- W3090503316 creator A5061656766 @default.
- W3090503316 creator A5063512925 @default.
- W3090503316 date "2020-10-03" @default.
- W3090503316 modified "2023-09-27" @default.
- W3090503316 title "Joint Inference of Structure and Diffusion in Partially Observed Social Networks." @default.
- W3090503316 cites W1558712742 @default.
- W3090503316 cites W1595449516 @default.
- W3090503316 cites W2003129826 @default.
- W3090503316 cites W2017099446 @default.
- W3090503316 cites W2023655578 @default.
- W3090503316 cites W2070645266 @default.
- W3090503316 cites W2099878672 @default.
- W3090503316 cites W2109553965 @default.
- W3090503316 cites W2125298866 @default.
- W3090503316 cites W2127492100 @default.
- W3090503316 cites W2128914432 @default.
- W3090503316 cites W2136284997 @default.
- W3090503316 cites W2142281120 @default.
- W3090503316 cites W2154454189 @default.
- W3090503316 cites W2164067128 @default.
- W3090503316 cites W2166330262 @default.
- W3090503316 cites W2168722292 @default.
- W3090503316 cites W2187089797 @default.
- W3090503316 cites W2253809915 @default.
- W3090503316 cites W2263288921 @default.
- W3090503316 cites W2281694839 @default.
- W3090503316 cites W2403959208 @default.
- W3090503316 cites W2429302915 @default.
- W3090503316 cites W2550937221 @default.
- W3090503316 cites W2557098743 @default.
- W3090503316 cites W2569283211 @default.
- W3090503316 cites W2740189214 @default.
- W3090503316 cites W2752246507 @default.
- W3090503316 cites W2808028840 @default.
- W3090503316 cites W2904238011 @default.
- W3090503316 cites W2905254322 @default.
- W3090503316 cites W2907927214 @default.
- W3090503316 cites W2909974357 @default.
- W3090503316 cites W2962702810 @default.
- W3090503316 cites W2962735465 @default.
- W3090503316 cites W2963066037 @default.
- W3090503316 cites W2963364606 @default.
- W3090503316 cites W2963493749 @default.
- W3090503316 cites W2964023767 @default.
- W3090503316 cites W2971779724 @default.
- W3090503316 cites W3100984977 @default.
- W3090503316 cites W3104330980 @default.
- W3090503316 cites W34646664 @default.
- W3090503316 cites W560666591 @default.
- W3090503316 hasPublicationYear "2020" @default.
- W3090503316 type Work @default.
- W3090503316 sameAs 3090503316 @default.
- W3090503316 citedByCount "0" @default.
- W3090503316 crossrefType "posted-content" @default.
- W3090503316 hasAuthorship W3090503316A5039988490 @default.
- W3090503316 hasAuthorship W3090503316A5061656766 @default.
- W3090503316 hasAuthorship W3090503316A5063512925 @default.
- W3090503316 hasConcept C114614502 @default.
- W3090503316 hasConcept C114713312 @default.
- W3090503316 hasConcept C119857082 @default.
- W3090503316 hasConcept C124101348 @default.
- W3090503316 hasConcept C133079900 @default.
- W3090503316 hasConcept C136764020 @default.
- W3090503316 hasConcept C154945302 @default.
- W3090503316 hasConcept C162324750 @default.
- W3090503316 hasConcept C167966045 @default.
- W3090503316 hasConcept C187736073 @default.
- W3090503316 hasConcept C2522767166 @default.
- W3090503316 hasConcept C2776214188 @default.
- W3090503316 hasConcept C2780451532 @default.
- W3090503316 hasConcept C2781002164 @default.
- W3090503316 hasConcept C33923547 @default.
- W3090503316 hasConcept C39890363 @default.
- W3090503316 hasConcept C41008148 @default.
- W3090503316 hasConcept C4727928 @default.
- W3090503316 hasConcept C49937458 @default.
- W3090503316 hasConcept C518677369 @default.
- W3090503316 hasConcept C9357733 @default.
- W3090503316 hasConceptScore W3090503316C114614502 @default.
- W3090503316 hasConceptScore W3090503316C114713312 @default.
- W3090503316 hasConceptScore W3090503316C119857082 @default.
- W3090503316 hasConceptScore W3090503316C124101348 @default.
- W3090503316 hasConceptScore W3090503316C133079900 @default.
- W3090503316 hasConceptScore W3090503316C136764020 @default.
- W3090503316 hasConceptScore W3090503316C154945302 @default.
- W3090503316 hasConceptScore W3090503316C162324750 @default.
- W3090503316 hasConceptScore W3090503316C167966045 @default.
- W3090503316 hasConceptScore W3090503316C187736073 @default.
- W3090503316 hasConceptScore W3090503316C2522767166 @default.
- W3090503316 hasConceptScore W3090503316C2776214188 @default.
- W3090503316 hasConceptScore W3090503316C2780451532 @default.
- W3090503316 hasConceptScore W3090503316C2781002164 @default.
- W3090503316 hasConceptScore W3090503316C33923547 @default.
- W3090503316 hasConceptScore W3090503316C39890363 @default.
- W3090503316 hasConceptScore W3090503316C41008148 @default.
- W3090503316 hasConceptScore W3090503316C4727928 @default.
- W3090503316 hasConceptScore W3090503316C49937458 @default.