Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090567803> ?p ?o ?g. }
- W3090567803 endingPage "15342" @default.
- W3090567803 startingPage "15335" @default.
- W3090567803 abstract "Water splitting is a promising reaction for storing sustainable but intermittent energies. In water splitting, water oxidation is a bottleneck, and thus different catalysts have been synthesized for water oxidation. Metal–organic frameworks (MOFs) are among the highly efficient catalysts for water oxidation, and so far, MOF-based catalysts have been divided into two categories: MOF-derived catalysts and direct MOF catalysts. In particular, a nickel/cobalt MOF is reported to be one of the best direct catalysts for water oxidation. For the first-row transition MOF structures in general, a hypothesis is that the harsh conditions of OER could cause the decomposition of organic ligands and the formation of water-oxidizing oxide-based structures. By electrochemical methods, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and X-ray absorption spectroscopy, a nickel/cobalt MOF known to be a highly efficient catalyst for water oxidation is shown to form Ni/Co oxide, making it a candidate catalyst for oxygen evolution. MOFs are interesting precatalysts for metal oxide water-oxidizing catalysts, but control experiments are necessary for determining whether a certain MOF or other MOFs are true catalysts for OER. Thus, finding a true and direct MOF electrocatalyst for OER is a challenge." @default.
- W3090567803 created "2020-10-08" @default.
- W3090567803 creator A5018585760 @default.
- W3090567803 creator A5034568078 @default.
- W3090567803 creator A5046458061 @default.
- W3090567803 creator A5047640712 @default.
- W3090567803 creator A5049833079 @default.
- W3090567803 creator A5054018303 @default.
- W3090567803 creator A5077474370 @default.
- W3090567803 date "2020-10-06" @default.
- W3090567803 modified "2023-09-30" @default.
- W3090567803 title "Revisiting Metal–Organic Frameworks for Oxygen Evolution: A Case Study" @default.
- W3090567803 cites W1677747913 @default.
- W3090567803 cites W1943588217 @default.
- W3090567803 cites W1969929163 @default.
- W3090567803 cites W1971113415 @default.
- W3090567803 cites W1973260029 @default.
- W3090567803 cites W1973721002 @default.
- W3090567803 cites W1976204697 @default.
- W3090567803 cites W1978810375 @default.
- W3090567803 cites W1985326183 @default.
- W3090567803 cites W1986829915 @default.
- W3090567803 cites W1989917955 @default.
- W3090567803 cites W1995500119 @default.
- W3090567803 cites W1999908724 @default.
- W3090567803 cites W2011715705 @default.
- W3090567803 cites W2015127275 @default.
- W3090567803 cites W2021017934 @default.
- W3090567803 cites W2021181016 @default.
- W3090567803 cites W2022085591 @default.
- W3090567803 cites W2022730294 @default.
- W3090567803 cites W2030938880 @default.
- W3090567803 cites W2040057498 @default.
- W3090567803 cites W2052140813 @default.
- W3090567803 cites W2061090798 @default.
- W3090567803 cites W2079436950 @default.
- W3090567803 cites W2094484599 @default.
- W3090567803 cites W2096293426 @default.
- W3090567803 cites W2096975427 @default.
- W3090567803 cites W2110864332 @default.
- W3090567803 cites W2110988939 @default.
- W3090567803 cites W2137818170 @default.
- W3090567803 cites W2138022670 @default.
- W3090567803 cites W2141939342 @default.
- W3090567803 cites W2151019712 @default.
- W3090567803 cites W2153769615 @default.
- W3090567803 cites W2237846741 @default.
- W3090567803 cites W2271796547 @default.
- W3090567803 cites W2312362393 @default.
- W3090567803 cites W2331050591 @default.
- W3090567803 cites W2341661453 @default.
- W3090567803 cites W2558998316 @default.
- W3090567803 cites W2575688870 @default.
- W3090567803 cites W2621868363 @default.
- W3090567803 cites W2802043246 @default.
- W3090567803 cites W2802643565 @default.
- W3090567803 cites W2803763204 @default.
- W3090567803 cites W2884188420 @default.
- W3090567803 cites W2915123062 @default.
- W3090567803 cites W2951656665 @default.
- W3090567803 cites W2990294600 @default.
- W3090567803 cites W3012071923 @default.
- W3090567803 cites W3103637439 @default.
- W3090567803 cites W60776968 @default.
- W3090567803 doi "https://doi.org/10.1021/acs.inorgchem.0c02305" @default.
- W3090567803 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33021376" @default.
- W3090567803 hasPublicationYear "2020" @default.
- W3090567803 type Work @default.
- W3090567803 sameAs 3090567803 @default.
- W3090567803 citedByCount "25" @default.
- W3090567803 countsByYear W30905678032021 @default.
- W3090567803 countsByYear W30905678032022 @default.
- W3090567803 countsByYear W30905678032023 @default.
- W3090567803 crossrefType "journal-article" @default.
- W3090567803 hasAuthorship W3090567803A5018585760 @default.
- W3090567803 hasAuthorship W3090567803A5034568078 @default.
- W3090567803 hasAuthorship W3090567803A5046458061 @default.
- W3090567803 hasAuthorship W3090567803A5047640712 @default.
- W3090567803 hasAuthorship W3090567803A5049833079 @default.
- W3090567803 hasAuthorship W3090567803A5054018303 @default.
- W3090567803 hasAuthorship W3090567803A5077474370 @default.
- W3090567803 hasConcept C106773901 @default.
- W3090567803 hasConcept C127413603 @default.
- W3090567803 hasConcept C135473242 @default.
- W3090567803 hasConcept C147789679 @default.
- W3090567803 hasConcept C150394285 @default.
- W3090567803 hasConcept C161790260 @default.
- W3090567803 hasConcept C17525397 @default.
- W3090567803 hasConcept C178790620 @default.
- W3090567803 hasConcept C179104552 @default.
- W3090567803 hasConcept C179366358 @default.
- W3090567803 hasConcept C185592680 @default.
- W3090567803 hasConcept C2779664699 @default.
- W3090567803 hasConcept C2779851234 @default.
- W3090567803 hasConcept C35590869 @default.
- W3090567803 hasConcept C42360764 @default.
- W3090567803 hasConcept C504270822 @default.
- W3090567803 hasConcept C515602321 @default.