Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090569126> ?p ?o ?g. }
- W3090569126 endingPage "103529" @default.
- W3090569126 startingPage "103529" @default.
- W3090569126 abstract "• The maturity of bagged ‘Fuji’ apple is determined by Vis-NIR spectroscopy. • Starch index is used to determine the maturity level of apple. • The characteristic wavelengths and spectral indexes related to apple maturity are extracted. • Machine learning classifiers are established to predict apple maturity on three levels. Determination of apple maturity in orchards is very important to determine the harvest time and postharvest storage conditions. The aim of this study is to investigate the ability of visible and near-infrared (Vis-NIR) spectroscopy to determine the maturity of bagged ‘Fuji’ apples using the starch index as the maturity index. Using the starch index, 846 apples were divided into three maturity levels (immature, harvest maturity, and eatable maturity). Principal component analysis, the random frog (RF) algorithm, and the RF algorithm combined with the successive projection algorithm (RF-SPA) were used to extract the principal components or characteristic wavelengths of the spectral data. Five machine learning algorithms, namely, the least squares support vector machine (LSSVM), the probabilistic neural network, the extreme learning machine, the partial least squares discrimination analysis, and linear discriminant analysis (LDA), were used to develop a calibration model. By comparing the results of different modeling methods, it was determined that the prediction performance of the RF-SPA-LSSVM model based on 15 characteristic wavelengths was the best. The classification accuracy of the prediction set was 89.05% and the area under the receiver operating characteristic curve of the three types of apples was greater than 0.9210. In addition, four spectral indexes related to the chlorophyll content were used to predict apple maturity. The classification accuracies of the LDA models based on the spectral indexes were 77.63%–80.95%, which were lower than that of the calibration model based on the characteristic wavelength. The results show that the maturity of bagged ‘Fuji’ apples can be accurately and nondestructive determined by Vis-NIR spectroscopy. The selected characteristic wavelengths and spectral indexes can provide a reference for development of a nondestructive device for determination of apple maturity." @default.
- W3090569126 created "2020-10-08" @default.
- W3090569126 creator A5011877804 @default.
- W3090569126 creator A5019560977 @default.
- W3090569126 creator A5029938413 @default.
- W3090569126 creator A5039469454 @default.
- W3090569126 creator A5040415773 @default.
- W3090569126 creator A5041046495 @default.
- W3090569126 creator A5049322624 @default.
- W3090569126 creator A5057295570 @default.
- W3090569126 creator A5061242634 @default.
- W3090569126 date "2020-12-01" @default.
- W3090569126 modified "2023-09-28" @default.
- W3090569126 title "Determination of bagged ‘Fuji’ apple maturity by visible and near-infrared spectroscopy combined with a machine learning algorithm" @default.
- W3090569126 cites W1964168965 @default.
- W3090569126 cites W1979477700 @default.
- W3090569126 cites W1980942782 @default.
- W3090569126 cites W1982755765 @default.
- W3090569126 cites W2013158245 @default.
- W3090569126 cites W2014596061 @default.
- W3090569126 cites W2024121705 @default.
- W3090569126 cites W2039897671 @default.
- W3090569126 cites W2043187496 @default.
- W3090569126 cites W2054403851 @default.
- W3090569126 cites W2055563201 @default.
- W3090569126 cites W2078106974 @default.
- W3090569126 cites W2079369932 @default.
- W3090569126 cites W2083979626 @default.
- W3090569126 cites W2107412299 @default.
- W3090569126 cites W2111072639 @default.
- W3090569126 cites W2265601771 @default.
- W3090569126 cites W2778376722 @default.
- W3090569126 cites W2782459260 @default.
- W3090569126 cites W2793404110 @default.
- W3090569126 cites W2800396127 @default.
- W3090569126 cites W2806300291 @default.
- W3090569126 cites W2909003968 @default.
- W3090569126 cites W2913607644 @default.
- W3090569126 cites W2914092984 @default.
- W3090569126 cites W2934164816 @default.
- W3090569126 cites W2943860972 @default.
- W3090569126 cites W2945332497 @default.
- W3090569126 cites W2958937403 @default.
- W3090569126 cites W2965652261 @default.
- W3090569126 cites W2967703797 @default.
- W3090569126 cites W2994281462 @default.
- W3090569126 cites W3008993722 @default.
- W3090569126 cites W3029410602 @default.
- W3090569126 cites W935179719 @default.
- W3090569126 cites W950736322 @default.
- W3090569126 doi "https://doi.org/10.1016/j.infrared.2020.103529" @default.
- W3090569126 hasPublicationYear "2020" @default.
- W3090569126 type Work @default.
- W3090569126 sameAs 3090569126 @default.
- W3090569126 citedByCount "25" @default.
- W3090569126 countsByYear W30905691262021 @default.
- W3090569126 countsByYear W30905691262022 @default.
- W3090569126 countsByYear W30905691262023 @default.
- W3090569126 crossrefType "journal-article" @default.
- W3090569126 hasAuthorship W3090569126A5011877804 @default.
- W3090569126 hasAuthorship W3090569126A5019560977 @default.
- W3090569126 hasAuthorship W3090569126A5029938413 @default.
- W3090569126 hasAuthorship W3090569126A5039469454 @default.
- W3090569126 hasAuthorship W3090569126A5040415773 @default.
- W3090569126 hasAuthorship W3090569126A5041046495 @default.
- W3090569126 hasAuthorship W3090569126A5049322624 @default.
- W3090569126 hasAuthorship W3090569126A5057295570 @default.
- W3090569126 hasAuthorship W3090569126A5061242634 @default.
- W3090569126 hasConcept C101433766 @default.
- W3090569126 hasConcept C105795698 @default.
- W3090569126 hasConcept C11413529 @default.
- W3090569126 hasConcept C138496976 @default.
- W3090569126 hasConcept C154945302 @default.
- W3090569126 hasConcept C15744967 @default.
- W3090569126 hasConcept C22354355 @default.
- W3090569126 hasConcept C27438332 @default.
- W3090569126 hasConcept C33923547 @default.
- W3090569126 hasConcept C41008148 @default.
- W3090569126 hasConcept C69738355 @default.
- W3090569126 hasConceptScore W3090569126C101433766 @default.
- W3090569126 hasConceptScore W3090569126C105795698 @default.
- W3090569126 hasConceptScore W3090569126C11413529 @default.
- W3090569126 hasConceptScore W3090569126C138496976 @default.
- W3090569126 hasConceptScore W3090569126C154945302 @default.
- W3090569126 hasConceptScore W3090569126C15744967 @default.
- W3090569126 hasConceptScore W3090569126C22354355 @default.
- W3090569126 hasConceptScore W3090569126C27438332 @default.
- W3090569126 hasConceptScore W3090569126C33923547 @default.
- W3090569126 hasConceptScore W3090569126C41008148 @default.
- W3090569126 hasConceptScore W3090569126C69738355 @default.
- W3090569126 hasFunder F4320321001 @default.
- W3090569126 hasFunder F4320321543 @default.
- W3090569126 hasFunder F4320326174 @default.
- W3090569126 hasFunder F4320335787 @default.
- W3090569126 hasFunder F4320336350 @default.
- W3090569126 hasLocation W30905691261 @default.
- W3090569126 hasOpenAccess W3090569126 @default.
- W3090569126 hasPrimaryLocation W30905691261 @default.