Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090607522> ?p ?o ?g. }
- W3090607522 endingPage "101170" @default.
- W3090607522 startingPage "101170" @default.
- W3090607522 abstract "The quantity and nutritional quality of forage are key drivers for ungulate populations, including mule deer (Odocoileus hemionus) and Rocky Mountain elk (Cervus elaphus nelsoni), in the western U.S., but current vegetation maps are too coarse spatially and temporally to effectively characterize fine-scale habitat. To address some of these gaps, we tested a novel approach using existing vegetation surveys, maps, and remotely sensed data to develop fine-scale forage species distribution models (SDMs) across Idaho, USA. We modelled 20 forage species that are suitable for mule deer and Rocky Mountain elk. Climatic, topographic, soil, vegetation, and disturbance variables were attributed to approximately 44.3 million habitat patches generated using multi-scale object-oriented image analysis. Lasso logistic regression was implemented to produce predictive SDMs. We evaluated if the inclusion of distal environmental variables (i.e., indirect effects) improved model performance beyond the inclusion of proximal variables (i.e., direct physiological effect) only. Our results showed that all models provided higher predictive accuracy than chance, with an average AUC across the 20 forage species of 0.84 for distal and proximal variables and 0.81 for proximal variables only. This indicated that the addition of distal variables improved model performance. We validated the models using two independent datasets from two regions of Idaho. We found that predicted forage species occurrence was on average within 10% of observed occurrence at both sites. However, predicted occurrences had much less variability between habitat patches than the validation data, implying that the models did not fully capture fine-scale heterogeneity. We suggest that future efforts will benefit from additional fine resolution (i.e., less than 30 m) environmental predictor variables and greater accounting of environmental disturbances (i.e., wildfire, grazing) in the training data. Our approach was novel both in methodology and spatial scale (i.e., resolution and extent). Our models can inform ungulate nutrition by predicting the occurrence of forage species and aide habitat management strategies to improve nutritional quality." @default.
- W3090607522 created "2020-10-08" @default.
- W3090607522 creator A5018370140 @default.
- W3090607522 creator A5026171633 @default.
- W3090607522 creator A5037357292 @default.
- W3090607522 creator A5037447832 @default.
- W3090607522 creator A5046621442 @default.
- W3090607522 creator A5059049063 @default.
- W3090607522 creator A5068997488 @default.
- W3090607522 creator A5077301983 @default.
- W3090607522 creator A5078749243 @default.
- W3090607522 date "2020-11-01" @default.
- W3090607522 modified "2023-09-27" @default.
- W3090607522 title "Predicting fine-scale forage distribution to inform ungulate nutrition" @default.
- W3090607522 cites W1496467185 @default.
- W3090607522 cites W1966811787 @default.
- W3090607522 cites W1980753477 @default.
- W3090607522 cites W1985699479 @default.
- W3090607522 cites W1988427230 @default.
- W3090607522 cites W1998025025 @default.
- W3090607522 cites W2005348281 @default.
- W3090607522 cites W2017834421 @default.
- W3090607522 cites W2025992337 @default.
- W3090607522 cites W2029047761 @default.
- W3090607522 cites W2032338264 @default.
- W3090607522 cites W2033686454 @default.
- W3090607522 cites W2079671583 @default.
- W3090607522 cites W2080737078 @default.
- W3090607522 cites W2084829927 @default.
- W3090607522 cites W2094930844 @default.
- W3090607522 cites W2097601813 @default.
- W3090607522 cites W2102460840 @default.
- W3090607522 cites W2105554350 @default.
- W3090607522 cites W2118778800 @default.
- W3090607522 cites W2120133022 @default.
- W3090607522 cites W2120240519 @default.
- W3090607522 cites W2129435498 @default.
- W3090607522 cites W2138800506 @default.
- W3090607522 cites W2154160829 @default.
- W3090607522 cites W2158524254 @default.
- W3090607522 cites W2167694028 @default.
- W3090607522 cites W2170593593 @default.
- W3090607522 cites W2182526330 @default.
- W3090607522 cites W2285280507 @default.
- W3090607522 cites W2307162247 @default.
- W3090607522 cites W2329826029 @default.
- W3090607522 cites W2340078995 @default.
- W3090607522 cites W2346655432 @default.
- W3090607522 cites W2542707665 @default.
- W3090607522 cites W2575167233 @default.
- W3090607522 cites W2598320237 @default.
- W3090607522 cites W2790480659 @default.
- W3090607522 cites W2959357308 @default.
- W3090607522 cites W4243362956 @default.
- W3090607522 cites W4294541781 @default.
- W3090607522 doi "https://doi.org/10.1016/j.ecoinf.2020.101170" @default.
- W3090607522 hasPublicationYear "2020" @default.
- W3090607522 type Work @default.
- W3090607522 sameAs 3090607522 @default.
- W3090607522 citedByCount "1" @default.
- W3090607522 countsByYear W30906075222023 @default.
- W3090607522 crossrefType "journal-article" @default.
- W3090607522 hasAuthorship W3090607522A5018370140 @default.
- W3090607522 hasAuthorship W3090607522A5026171633 @default.
- W3090607522 hasAuthorship W3090607522A5037357292 @default.
- W3090607522 hasAuthorship W3090607522A5037447832 @default.
- W3090607522 hasAuthorship W3090607522A5046621442 @default.
- W3090607522 hasAuthorship W3090607522A5059049063 @default.
- W3090607522 hasAuthorship W3090607522A5068997488 @default.
- W3090607522 hasAuthorship W3090607522A5077301983 @default.
- W3090607522 hasAuthorship W3090607522A5078749243 @default.
- W3090607522 hasBestOaLocation W30906075221 @default.
- W3090607522 hasConcept C100970517 @default.
- W3090607522 hasConcept C105795698 @default.
- W3090607522 hasConcept C142724271 @default.
- W3090607522 hasConcept C151956035 @default.
- W3090607522 hasConcept C185933670 @default.
- W3090607522 hasConcept C18903297 @default.
- W3090607522 hasConcept C205649164 @default.
- W3090607522 hasConcept C2775972322 @default.
- W3090607522 hasConcept C2776133958 @default.
- W3090607522 hasConcept C2778208748 @default.
- W3090607522 hasConcept C2778755073 @default.
- W3090607522 hasConcept C2779370140 @default.
- W3090607522 hasConcept C33923547 @default.
- W3090607522 hasConcept C39432304 @default.
- W3090607522 hasConcept C58640448 @default.
- W3090607522 hasConcept C71924100 @default.
- W3090607522 hasConcept C86803240 @default.
- W3090607522 hasConceptScore W3090607522C100970517 @default.
- W3090607522 hasConceptScore W3090607522C105795698 @default.
- W3090607522 hasConceptScore W3090607522C142724271 @default.
- W3090607522 hasConceptScore W3090607522C151956035 @default.
- W3090607522 hasConceptScore W3090607522C185933670 @default.
- W3090607522 hasConceptScore W3090607522C18903297 @default.
- W3090607522 hasConceptScore W3090607522C205649164 @default.
- W3090607522 hasConceptScore W3090607522C2775972322 @default.
- W3090607522 hasConceptScore W3090607522C2776133958 @default.