Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090685066> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3090685066 abstract "Random forest is an ensemble method used to improve the performance of single tree classifiers. In evolving data streams, the classifier needs to be adaptive and work under constraints of space and time. One benefit of random forest is its ability to be executed in parallel. In our research we introduce a random forest model utilizing a hybrid of both GPU and CPU, called GPU-based State-Adaptive Random Forest (GSARF). We address the pre-existing challenges of adapting random forest for data streams, specifically in the area of continual learning. Our novel approach reuses previously seen trees in the random forest when previous concepts reappear. This allows us to retain prior knowledge and provide a more stable predictive accuracy when changes occur in the data stream. Our random forest for data streams stores three types of trees, foreground trees which are trees that are currently used in prediction, background trees which are trees that are built when we are aware of possible changes in the data streams, and candidate trees which are trees that had been highly used in the previous concepts, but are now discarded due to changes in the data stream. We store candidate trees as they may be potentially useful at a later period in a repository and can be accessed when needed. We empirically show our technique performs up to 138 times the speed compared to current CPU-based random forest benchmarks. Our approach has shown to outperform a baseline GPU-based approach in terms of cumulative accuracy performance." @default.
- W3090685066 created "2020-10-08" @default.
- W3090685066 creator A5017570709 @default.
- W3090685066 creator A5027854612 @default.
- W3090685066 creator A5072751099 @default.
- W3090685066 date "2020-07-01" @default.
- W3090685066 modified "2023-09-25" @default.
- W3090685066 title "GPU-based State Adaptive Random Forest for Evolving Data Streams" @default.
- W3090685066 cites W164124199 @default.
- W3090685066 cites W1989329630 @default.
- W3090685066 cites W2068714596 @default.
- W3090685066 cites W2135335717 @default.
- W3090685066 cites W2143991132 @default.
- W3090685066 cites W2263086798 @default.
- W3090685066 cites W2434851943 @default.
- W3090685066 cites W2553138662 @default.
- W3090685066 cites W2585528949 @default.
- W3090685066 cites W2626498001 @default.
- W3090685066 cites W2907861810 @default.
- W3090685066 cites W2907883380 @default.
- W3090685066 cites W2935770052 @default.
- W3090685066 doi "https://doi.org/10.1109/ijcnn48605.2020.9207333" @default.
- W3090685066 hasPublicationYear "2020" @default.
- W3090685066 type Work @default.
- W3090685066 sameAs 3090685066 @default.
- W3090685066 citedByCount "0" @default.
- W3090685066 crossrefType "proceedings-article" @default.
- W3090685066 hasAuthorship W3090685066A5017570709 @default.
- W3090685066 hasAuthorship W3090685066A5027854612 @default.
- W3090685066 hasAuthorship W3090685066A5072751099 @default.
- W3090685066 hasConcept C113174947 @default.
- W3090685066 hasConcept C119857082 @default.
- W3090685066 hasConcept C124101348 @default.
- W3090685066 hasConcept C134306372 @default.
- W3090685066 hasConcept C154945302 @default.
- W3090685066 hasConcept C169258074 @default.
- W3090685066 hasConcept C2778484313 @default.
- W3090685066 hasConcept C33923547 @default.
- W3090685066 hasConcept C41008148 @default.
- W3090685066 hasConcept C60777511 @default.
- W3090685066 hasConcept C76155785 @default.
- W3090685066 hasConcept C89198739 @default.
- W3090685066 hasConcept C95623464 @default.
- W3090685066 hasConceptScore W3090685066C113174947 @default.
- W3090685066 hasConceptScore W3090685066C119857082 @default.
- W3090685066 hasConceptScore W3090685066C124101348 @default.
- W3090685066 hasConceptScore W3090685066C134306372 @default.
- W3090685066 hasConceptScore W3090685066C154945302 @default.
- W3090685066 hasConceptScore W3090685066C169258074 @default.
- W3090685066 hasConceptScore W3090685066C2778484313 @default.
- W3090685066 hasConceptScore W3090685066C33923547 @default.
- W3090685066 hasConceptScore W3090685066C41008148 @default.
- W3090685066 hasConceptScore W3090685066C60777511 @default.
- W3090685066 hasConceptScore W3090685066C76155785 @default.
- W3090685066 hasConceptScore W3090685066C89198739 @default.
- W3090685066 hasConceptScore W3090685066C95623464 @default.
- W3090685066 hasLocation W30906850661 @default.
- W3090685066 hasOpenAccess W3090685066 @default.
- W3090685066 hasPrimaryLocation W30906850661 @default.
- W3090685066 hasRelatedWork W10715555 @default.
- W3090685066 hasRelatedWork W10934940 @default.
- W3090685066 hasRelatedWork W14120560 @default.
- W3090685066 hasRelatedWork W1924137 @default.
- W3090685066 hasRelatedWork W3140435 @default.
- W3090685066 hasRelatedWork W3989084 @default.
- W3090685066 hasRelatedWork W482721 @default.
- W3090685066 hasRelatedWork W8248617 @default.
- W3090685066 hasRelatedWork W8451425 @default.
- W3090685066 hasRelatedWork W9481221 @default.
- W3090685066 isParatext "false" @default.
- W3090685066 isRetracted "false" @default.
- W3090685066 magId "3090685066" @default.
- W3090685066 workType "article" @default.